首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results from an experimental investigation into the influence of freeze-thaw action on the FRP-concrete interface fracture properties are presented. The FRP-concrete bond behavior is investigated using a direct shear test. The cohesive stress transfer between FRP and concrete during debonding is determined from spatially continuous measurements of surface strains obtained at different stages of the debonding load response. The non-linear material law for the interface shear fracture, which provides a relation between the interface shear stress as a function of relative slip between the FRP and concrete, is established for specimens subjected to different levels of damage associated with freezing and thawing action. The influence of freeze-thaw action on the cohesive stress transfer during crack propagation, and on the cohesive interface fracture parameters is evaluated using a statistical hypothesis testing method. A larger percentage decrease in the interface fracture energy due to freeze-thaw cycles compared to the corresponding decrease in the ultimate nominal stress at debonding was noted. A decrease in the length of the cohesive stress transfer zone and the maximum interface cohesive stress were also observed with freeze-thaw cycling.  相似文献   

2.
Interface cohesive stress transfer between FRP and concrete during debonding is typically obtained using measured surface strains on the FRP, along the direction of the fibers. The cohesive material law is derived under a set of assumptions which include: (a) the bending stiffness of the FRP laminate is insignificant with respect to that of the concrete test block; (b) the strains in the bulk concrete produced by debonding are negligible, thus concrete substrate can be considered rigid; (c) there is stress transfer between FRP and concrete through the FRP–concrete interface which is of zero thickness; and (d) the axial strain in the FRP composite is uniform across its thickness. In this paper, a test procedure for directly obtaining the through-thickness strains in the FRP and the concrete substrate during cohesive stress transfer associated with debonding is presented. The displacement and strain fields are measured on the side of a direct-shear specimen with the FRP strip attached on the edge. Based on the experimental results, the influence of the assumptions which have been introduced to determine the cohesive law is discussed. Within the stress transfer zone there is a sharp gradient in the shear strain. The location of the interface crack within the stress transfer zone and the cohesive stress transfer during the propagation of the interface crack are determined.  相似文献   

3.
External bonding of FRP plates or sheets has emerged as a popular method for strengthening reinforced concrete structures. Debonding along the FPR-concrete interface can lead to premature failure of the structures. In this study, a combined cohesive/bridging zone model is presented to simulate the debonding procedure between the FRP and concrete interface. In this model, the crack processing zone of the interface is modeled by a cohesive zone model and the particle interlocking zone of the interface is modeled by a bridging zone model. Two different linearly softening bond stress-slip laws are used to describe these two different zones. Closed-form solutions of interfacial stress, FRP stress and ultimate load are obtained for a typical single-lap specimen and verified with experimental results. The pulling force applied to the FRP plate is found to be proportional to the square root of the energy release rate at the debonding tip for this model. Such a relationship is then extended to any general shapes of bond stress-slip law through J-integral method. A new approach to experimentally determine the bond stress-slip law is also proposed.  相似文献   

4.
Fracturing behaviors of FRP-strengthened concrete structures   总被引:1,自引:0,他引:1  
In this paper, we focus on the study of concrete cracking behavior and interfacial debonding fracture in fiber reinforced polymer (FRP)-strengthened concrete beams. An experimental program is systematically reviewed according to the observed failure modes, in which it is found that the interfacial debonding may propagate either within the adhesive layer or through concrete layer in the vicinity of bond interface. A finite element analysis is performed to investigate the different types of debonding propagation along FRP-concrete interface and crack distribution in concrete. For the numerical fracture models, interfacial debonding that initiates and propagates in adhesive layer is modeled by fictitious interfacial crack model. And concrete cracking, including the debonding fracture through interfacial concrete, is modeled by smeared crack model. Properties of the interfacial adhesive layer and concrete are considered to significantly influence the debonding propagation types and crack distribution. The interactions between interfacial bond strength, interfacial fracture energy of bond adhesive layer and tensile strength, fracture energy of concrete are discussed in detail through a parametric study. According to the results, the effects of these properties on different types of interfacial debonding, concrete cracking behavior and structural load-carrying capacity are clearly understood.  相似文献   

5.
该文采用双线形损伤粘结模型研究带切口FRP-混凝土三点受弯梁(3PBB)I型加载下的界面断裂性能。通过有限元参数分析,详细讨论了界面粘结强度、界面粘结能、混凝土抗拉强度、混凝土断裂能对3PBB受力性能的影响。数值模拟表明,FRP-混凝土界面有两种破坏形式,包括FRP-混凝土界面的损伤脱粘和界面混凝土的损伤脱粘破坏,与实验所观察到的现象一致。两种破坏形式尽管在宏观上均表现为界面脱粘,但破坏机制却不同。FRP-混凝土界面的损伤粘结模型与混凝土的拉伸塑性损伤模型相结合,不但再现了3PBB的宏观力学性能,数值分析得到的荷载-位移曲线接近实验结果,而且还能详细展示FRP-混凝土界面的损伤、断裂破坏过程以及损伤在FRP-混凝土界面和界面混凝土之间的转移,能够预测构件的承载力,有助于界面优化设计,这是单纯以能量判据预测裂纹发展的经典断裂力学方法所无法做到的。  相似文献   

6.
The increasing use of carbon fiber reinforced polymer (FRP) sheets for strengthening existing reinforced concrete beams has generated considerable research interest in understanding the debonding mechanism of failure in such systems. The influence of the width of the FRP on the load-carrying capacity is investigated in this paper. The interfacial crack propagation and strain distribution during shear debonding are studied using a full-field optical technique known as digital image correlation. The results indicate the development of high stress/strain gradients at the interface as a consequence of the relative slip between the FRP and the concrete. The interface stress transfer between the FRP and concrete produces axial strain gradients in the FRP along its length. In the vicinity of the edges along the width of the FRP, edge regions comprising of both FRP and concrete are established. The edge region is characterized by high strain gradients in a direction perpendicular to the length and is of fixed width throughout the debonding process. The size of the edge regions is also found to be quite independent of the width of the FRP. Mode-II fracture condition exists in the interface directly below the FRP away from the edge regions. The interfacial crack is shown to be associated with a cohesive stress transfer zone of fixed length. During debonding, the stress transfer zone is shown to propagate in a self-similar manner at a fixed load. The interface fracture properties obtained from the portion of FRP away from the edge regions are shown to be independent of the FRP width. It is shown that when the width of concrete is larger than that required for establishing the edge regions, the nominal stress at debonding increases with an increase in the width of FRP. The scaling in the load carrying capacity during shear debonding is shown to be the result of the edge regions which do not scale with the width of the FRP.  相似文献   

7.
In this paper, analytical solutions based on a cohesive zone model (CZM) are developed for the bond fiber-reinforce dpolymer (FRP) tendon anchorage under axial load. With bilinear cohesive laws, the analytical solutions of tensile capacity of anchorages are derived. The concept of the minimum relative interface displacement sm is introduced and used as the fundamental variable to express all other parameters, such as external tensile load. Experimental and analytical results show that the thickness of the anchoring material is main factor affecting tensile capacity. The characteristic bond strength depends mainly on the properties of the bonding agent-anchoring material, the geometry and surface conditions of the tendon, and the radial stiffness of the confining medium. A comparison of the calculated and experimental results showed good agreement. Formulas based on fracture energy of the tension load capacity derived in the present work can be directly used in the design of FRP tendon anchorage.  相似文献   

8.
This paper presents an experimental and analytical research study aimed at understanding and modeling of debonding failures in fiber reinforced polymer (FRP) strengthened reinforced concrete (RC) beams. The experimental program investigated debonding failure modes and mechanisms in beams strengthened in shear and/or flexure and tested under monotonic loading. A newly developed fracture mechanics based model considers the global energy balance of the system and predicts the FRP debonding failure load by characterizing the dominant mechanisms of energy dissipation during debonding. Validation of the model is performed using experimental data from several independent research studies and a design procedure is outlined.  相似文献   

9.
The cohesive stress transfer during the sub-critical crack growth associated with the debonding of FRP from concrete under fatigue loading is experimentally investigated using the direct shear test set-up. The study focused on high-amplitude/low-cycle fatigue. The fatigue sub-critical crack growth occurs at a load that is smaller than the static bond capacity of the interface, obtained from monotonic quasi-static loading, and is also associated with a smaller value of the interfacial fracture energy. The strain distribution during debonding is obtained using digital image correlation. The results indicate that the strain distribution along the FRP during fatigue is similar to the strain distribution during debonding under monotonic quasi-static loading. The cohesive crack model and the shape of the strain distribution adopted for quasi-static monotonic loading is indirectly proven to be adequate to describe the stress transfer during fatigue loading. The length of the stress transfer zone during fatigue is observed to be smaller than the cohesive zone of the interfacial crack under quasi-static monotonic loading. The strain distribution across the width of the FRP sheet is not altered during and by fatigue loading. A new formulation to predict the debonding crack growth during fatigue is proposed.  相似文献   

10.
FRP-混凝土界面粘结性能是外贴FRP片材加固混凝土结构技术的关键问题。基于FRP与混凝土界面面内剪切试验,采用精细单元有限元模型对其界面粘结性能进行了研究。在该模型中,混凝土和FRP片材都使用非常小的单元加以模拟,通过调整混凝土材料的本构模型来考虑单元尺寸的影响。FRP单元和混凝土单元直接连接,通过混凝土单元的断裂破坏来模拟FRP和混凝土界面的宏观剥离破坏过程。通过与大量面内剪切试验结果对比,验证了该精细有限元模型的正确性,并基于精细有限元分析结果,对界面剥离破坏机理进行了讨论。  相似文献   

11.
Debonding of FRP plated concrete: A tri-layer fracture treatment   总被引:1,自引:0,他引:1  
  相似文献   

12.
A linear elastic fracture mechanics (LEFM) approach and a cohesive interface (cohesive zone) modeling approach to the debonding analysis of concrete beams strengthened with externally bonded fiber-reinforced-polymer (FRP) strips are studied and compared. The analytical models that are based on the two approaches are presented and discussed. The cohesive interface model is formulated using a potential function and it takes into account the shear effects, the effect of the peeling stresses, and the coupling of the shear and the peeling effects. This model takes the form of a set on nonlinear differential equations. The LEFM model combines stress analysis using the high order theory and fracture analysis using the concepts of the energy release rate and the J-integral. In addition, an algorithm that converts the results of the LEFM model into the equilibrium path of the debonding process is developed. The main advantages and disadvantages of the two approaches are also discussed. The two approaches are compared in terms of their applicability to quantify and describe the debonding process in various cases that include a single shear test, an edge peeling test, and a beam specimen strengthened with FRP.  相似文献   

13.
In this paper, an analytical method is developed to predict the distribution of interfacial shear stresses in concrete beams strengthened by composite plates. Accurate predictions of such stresses are necessary when designing to prevent debonding induced by a central flexural crack in a FRP-plated reinforced concrete (RC) beam. In the present analysis, a new theoretical model based on the bi-linear cohesive zone model for intermediate crack-induced debonding is established, with the unique feature of unifying debonding initiation and growth. Adherent shear deformations have been included in the present theoretical analyses by assuming a parabolic shear stress through the thickness of the adherents, verifying the cubic variation of the longitudinal displacement function, whereas all existing solutions neglect this effect. The results obtained for interfacial shear stress distribution near the crack are compared to the Jialai Wang analytical model and the numerical solutions are based on finite element analysis. Parametric studies are carried out to demonstrate the effect of the mechanical properties and thickness variations of FRP, concrete and adhesive on interface debonding. Indeed, the softening zone size is considerably larger than that obtained by other models which neglect adherent shear deformations. However, loads at the limit of the softening and debonding stages are larger than those calculated without the thickness effect. Consequently, debonding at the interface becomes less apparent and the lifespan of our structure is greater.  相似文献   

14.
An experimental investigation of the fatigue behavior of externally strengthened concrete with fiber-reinforced polymers (FRP) is conducted. In the experimental program, strain patterns along the bonded length and the surrounding concrete are determined using digital image correlation. The results herein presented indicate that debonding occurs during fatigue and it is related to the load range. The post-fatigue bond capacity of the interface is not affected by the previous cyclic loading if the remaining bonded part is enough to fully establish the stress transfer zone associated with quasi-static crack growth. Although further research is needed, this work points out several new and interesting aspects of the fatigue behavior of the FRP-concrete interface: (1) during fatigue loading the length of stress transfer zone is smaller than the stress transfer zone associated with the cohesive crack under quasi-static loading; (2) post-fatigue results suggest the possibility of a different debonding mechanism during fatigue loading; (3) fatigue life is dominated by crack initiation for fatigue loading with high amplitude and by crack propagation on decreasing the amplitude of fatigue load cycle.  相似文献   

15.
FRP加固混凝土梁受弯剥离破坏的有限元分析   总被引:2,自引:0,他引:2  
FRP加固钢筋混凝土梁受弯剥离破坏是一种非常常见的破坏形式。首先基于微观尺度有限元分析,对受弯剥离破坏的机理进行了研究,提出了一个受弯剥离的双重剥离破坏准则,以及相应的界面粘结滑移关系,使得受弯剥离可以由基于普通弥散裂缝模型的混凝土单元来加以模拟,并开发出了相应的FRP-混凝土界面单元模型。将该界面单元嵌入通用有限元程序MSC.MARC,对45根受弯剥离破坏的试验梁进行了有限元分析。分析结果表明,提出的计算模型与试验结果吻合良好,可以真实模拟受弯剥离破坏过程。  相似文献   

16.
The present paper addresses with intermediate crack (IC) debonding failure modes in FRP-strengthened reinforced concrete beams; a non-linear local deformation model, derived from a cracking analysis based on slip and bond stress, is adopted to predict the stresses and strains distribution at failure. Local bond-slip laws at the longitudinal steel-to-concrete and FRP-to-concrete interfaces, as well as the tension stiffening effect of the reinforcement (steel and FRP) to the concrete, are considered. Model predictions are compared to experimental results available in the literature together with predictions of other models. Reasonable agreement with experimentally measured IC debonding loads and FRP strains is observed for all examined strengthened beams. Results of a parametric analysis, varying geometrical and mechanical parameters involved in the physical problem are also presented and discussed.  相似文献   

17.
Fibre-reinforced plastic (FRP) composites have been increasingly used in rehabilitation and strengthening of concrete structures. Significant increases in stiffness and strength have been achieved by applying this technique. However, there is concern about the ductility or toughness performance of FRP/concrete hybrid structures, which is critical in the application of this technology. This paper presents a new theoretical method to predict the fracture resistance behaviour of FRP post-strengthened concrete flexural beams. No slip between the FRP and plain concrete matrix is assumed and Mode I fracture propagation is considered. The model is valid for a wide range of span-to-depth ratios and any crack length. The influence of the bridging stresses provided by the fracture process zone (FPZ) at the tip of a fictitious fracture is examined. The effect of various material and geometric parameters on the resistance curve and toughness of the hybrid structure is discussed, based on the numerical results from the developed theoretical formulae. The results provide a useful insight into the strengthening/toughening and the design of FRP sheet/concrete beam structures.  相似文献   

18.
Accurate modeling is required to estimate the debonding in a plated fiber-reinforced polymer (FRP) concrete beam. In the present investigation, a numerical method is developed to model a crack in the FRP–concrete interface. An initial notch is located at the mid-span of the concrete beam. A modified crack closure integral method is implemented to model Mode-I fracture in the concrete. In the present research, a special interface element is formulated to simulate and to predict the distribution of interfacial shear stresses by using drilling degrees of freedom in the nodes of interface elements. Cohesive forces in the nodes of interface elements are formulated by finite element methods. A crack propagation criterion is presented to evaluate when the crack grows in FRP–concrete interface. If the principal stress in the node at the tip of an interface element reaches the maximum shear stress along the FRP–concrete interface, debonding happens. The model is robust, accurate, independent of mesh size, and it is able to model the crack growth in the concrete and debonding of the FRP–concrete interface, simultaneously. The model presented in this study showed acceptable similarity to previous research data.  相似文献   

19.
Abstract: The scaling of the ultimate load in fibre‐reinforced polymer (FRP)–concrete debonding with the relative width of the FRP is experimentally investigated in this paper. Shear debonding tests are performed to evaluate the cohesive stress transfer between the adherents during the interface crack growth which produces debonding. Concrete specimens with two different widths and different widths of FRP are used in the experimental programme. The nominal stress at debonding increases with the FRP‐to‐concrete width ratio. For a given width of FRP composite sheet, lower debonding stress is obtained from concrete specimens with a larger width. The strain distribution on the FRP and concrete free surface at different stages of debonding was determined using a full‐field optical technique known as digital image correlation. The contribution of the two factors, the boundary effect and the restraint from the surrounding concrete, was studied from the measured strain distribution. The strain distributions across the FRP composite sheet and the concrete within the cohesive stress transfer zone associated with the interface crack are shown to be very inhomogeneous. A region of constant width associated with high shear strains is found at the edge of the FRP sheet during the entire debonding process. The increase in the ultimate nominal stress at debonding is shown to be due to the decrease in the proportion of the total width of the FRP occupied by the edge region. It is shown that the boundary region within the FRP is of a fixed width. The width of concrete close to the edge of the FRP involved in stress transfer, however, increases with the width of FRP. It is established that when the FRP‐to‐concrete width ratio is smaller than 0.5, the level of restraint from concrete increases with the FRP width.  相似文献   

20.
U型FRP加固钢筋混凝土梁受剪剥离性能的有限元分析   总被引:8,自引:0,他引:8  
采用FRP布对梁进行抗剪加固,可以有效的解决梁因配箍率不足而导致的受剪承载力偏低的问题。根据文献[1]中7根试验梁的参数,针对工程中常用的U型FRP受剪加固形式,建立三维有限元分析模型,采用商业有限元计算软件ANSYS,数值模拟了加载全过程和受剪剥离受力性能,根据试验结果确定了FRP-混凝土界面粘结剥离强度,并建议了合适的裂面剪力传递系数。根据有限元分析结果,作者又进一步研究了U型FRP布的应变分布、分担剪力的贡献、剥离破坏的过程,以及加固量、FRP类型和粘贴面积率对加固梁受剪承载力的影响。在有限元分析的基础上结合试验结果,建议了U型粘贴加固的受剪剥离承载力计算方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号