首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
The phase-transition temperatures of an elastin-like polypeptide (ELP) with the (GVGVP)40 sequence and solvent dipolarity/polarizability, hydrogen-bond donor acidity, and hydrogen-bond acceptor basicity in its aqueous solutions were quantified in the absence and presence of different salts (Na2SO4, NaCl, NaClO4, and NaSCN) and various osmolytes (sucrose, sorbitol, trehalose, and trimethylamine N-oxide (TMAO)). All osmolytes decreased the ELP phase-transition temperature, whereas NaCl and Na2SO4 decreased, and NaSCN and NaClO4 increased it. The determined phase-transition temperatures may be described as a linear combination of the solvent’s dipolarity/polarizability and hydrogen-bond donor acidity. The linear relationship established for the phase-transition temperature in the presence of salts differs quantitatively from that in the presence of osmolytes, in agreement with different (direct and indirect) mechanisms of the influence of salts and osmolytes on the ELP phase-transition temperature.  相似文献   

2.
Electrically conductive materials that are fabricated based on natural polymers have seen significant interest in numerous applications, especially when advanced properties such as self-healing are introduced. In this article review, the hydrogels that are based on natural polymers containing electrically conductive medium were covered, while both irreversible and reversible cross-links are presented. Among the conductive media, a special focus was put on conductive polymers, such as polyaniline, polypyrrole, polyacetylene, and polythiophenes, which can be potentially synthesized from renewable resources. Preparation methods of the conductive irreversible hydrogels that are based on these conductive polymers were reported observing their electrical conductivity values by Siemens per centimeter (S/cm). Additionally, the self-healing systems that were already applied or applicable in electrically conductive hydrogels that are based on natural polymers were presented and classified based on non-covalent or covalent cross-links. The real-time healing, mechanical stability, and electrically conductive values were highlighted.  相似文献   

3.
沈娟莉  付时雨 《化工进展》2022,41(6):3022-3037
纤维素是世界上最丰富的天然、可再生以及可生物降解的高分子材料,在化工、材料等领域有广泛的应用。本文主要对近几年来纤维素基水凝胶的研究进展进行了归纳总结。首先,介绍了纤维素基水凝胶的研究背景。其次,列举了纤维素水基凝胶的交联方法,主要有物理交联与化学交联。其中物理交联有氢键交联、疏水性交联、离子交联等,化学交联则是酯化交联、迈克尔加成、自由基共聚合、动态共价键交联等。最后,重点介绍了纤维素基水凝胶在可降解性、生物医学性、亲水性、吸附性、导电性等领域方面的应用。此外,对于纤维素基水凝胶材料在高机械性和产业化制备等方面的发展进行了展望。  相似文献   

4.
用天然壳聚糖接枝环氧聚乙二醇单甲醚和丙烯酰氯制备了大分子单体,采用核磁共振对合成单体进行了分析表征。合成的单体在光引发条件下制备了壳聚糖类大分子单体/聚乙二醇丙烯酸酯(PEGDA)复合水凝胶,研究了接枝度对该凝胶溶胀度、粘弹性、失重率的影响,电镜扫描对合成单体和水凝胶形态进行了表征。结果表明:壳聚糖上环氧聚乙二醇单甲醚和丙烯酰氯接枝率分别为16%和15%,所制备的复合水凝胶随着丙烯酰氯接枝度的提高,溶胀度、失重率逐渐降低。  相似文献   

5.
Poly(vinyl alcohol) (PVA) was modified with phthalic anhydride to obtain half esters with carboxylic acid groups, which made the reaction with epichlorohydrin easier. The oxirane ring underwent a further crosslinking that led to crosslinked polymers with polar groups capable of interacting strongly with water and therefore with properties of hydrogels. The curing kinetics of the crosslinking were studied by differential scanning calorimetry, and the dependence of the activation energy on conversion degree was studied by isoconversional kinetic analysis. Water absorption was determined gravimetrically as a function of time at room temperature. The swelling behavior of these hydrogels was related to the degree of crosslinking. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 693–698, 2003  相似文献   

6.
介绍了A/W生物活性微晶玻璃复合聚乙烯醇制备生物活性水凝胶的工艺。着重讨论了影响复合水凝胶的拉伸强度、弹性模量的主要因素,并通过IR、SEM对复合水凝胶的微观结构及其生物活性等进行了表征和分析。结果表明,由A/W生物活性微晶玻璃和聚乙烯醇复合的水凝胶具有良好的生物活性,此外,复合材料的分散性和均匀性也较理想,它们的拉伸强度、弹性模量等与PVA/A-W的质量比值有明显的依存关系。  相似文献   

7.
化学交联聚乙二醇水凝胶的制备方法   总被引:1,自引:0,他引:1  
对化学交联聚乙二醇基水凝胶的研究进展进行了综述.介绍了该类水凝胶的制备方法,包括几种常见的前体制备方法和常用的交联方法,并讨论了影响水凝胶溶胀性能和力学性能的几种因素.  相似文献   

8.
通过改进的Hummers方法成功制备了氧化石墨烯(GO)。以Fe3+为交联剂、丙烯酸(AA)为单体、GO为增强剂,采用原位聚合法制备了聚丙烯酸(PAA)/GO自修复水凝胶。考查了不同GO含量下,PAA/GO自修复水凝胶的溶胀性能,并探讨了GO含量、Fe3+含量和H2O含量对PAA/GO自修复水凝胶力学性能的影响,研究了PAA/GO自修复水凝胶的自修复性能。结果表明,Fe3+含量、GO含量和H2O单体含量分别为0.5 %(摩尔分数)、0.5 %(质量分数,下同)、80 %时,具有最佳力学性能(其拉伸强度为743.5 kPa,断裂伸长率为2940.5 %);GO含量为0.25 %时,PAA/GO自修复水凝胶的吸水性能最大;PAA/GO自修复水凝胶具有优异的自修复性能。  相似文献   

9.
杨琴  赵娜  房春娟  赵军凯  王文东 《化工学报》2018,69(12):5326-5331
用丙烯氧基七元瓜环((C3H5O)1CB[7])替代传统的交联剂N,N-亚甲基双丙烯酰胺(BIS)制备了新型丙烯氧基七元瓜环/聚丙烯酸凝胶((C3H5O)1CB[7]/PAA gel),该凝胶具有高弹性和自愈性。采用IR和1H NMR技术对其结构进行表征,研究了该水凝胶的溶胀、力学性能,宏观观察了其自愈性能。结果表明:(C3H5O)1CB[7]/PAA gel的网络形成作用力主要是多重氢键;在丙烯酸(AA)17.2%,水82.1%,(C3H5O)1CB[7]0.33%,过硫酸钾(KPS)0.33%时该水凝胶具有良好的自愈性及力学性能,其最大伸长量为105.6 cm,为原长的86倍,弹性模量0.39 kPa,平衡溶胀率是600%。该水凝胶有望成为一种潜在的生物组织工程材料。  相似文献   

10.
Chitosan (CH) is a very well-known biopolymer that has been widely used for the development of biomaterials with a wide range of applications in the biomedical field, such as the preparation of hydrogels, owing to its outstanding anti-inflammatory, antibacterial and antifungal properties, biocompatibility and biodegradability, although they present limited mechanical properties. Chemical crosslinking is one of the most recurrent strategies for the reinforcement of these structures and, above all, crosslinking with natural-origin compounds that do not compromise their biocompatibility is considered a hot topic in this research field. D-fructose (F), obtained from the hydrolyzation and further isomerization of starch, an abundant raw material and genipin (G), which is extracted from the fruits of Gardenia jasminoides Ellis are used as natural crosslinkers. Chitosan-based hydrogels crosslinked with each crosslinking agent are prepared and characterized through Fourier transform infrared (FTIR) spectroscopy, crosslinking and swelling degree determination, rheological, microstructural, and biological studies. The results demonstrate that crosslinking with G is more beneficial for chitosan-based hydrogels since these samples showed more compact structures and better rheological performance. Additionally, excellent biological in vitro behavior due to the crosslinking with G, unlike that of F.  相似文献   

11.
综述了采用辐射及化合物(二巯基-三嗪化合物、硅烷、二马来酸酐)化学交联聚氯乙烯的研究进展)。  相似文献   

12.
Properties of poly(N-isopropylacrylamide) gels—equilibrium degree of swelling, shear modulus, effective crosslink density and clarity—depend significantly upon the conditions of synthesis. While it is well known that monomer and crosslinker concentrations affect gel properties, other variables are shown here to have significant effects on the properties of the resulting gels. Initiator type and concentration, synthesis temperature, mold geometry and polymerization time all significantly affect the properties, including the swelling degree. Evidence suggests that the microstructure of these gels is particularly sensitive to these variables.  相似文献   

13.
周宏霞  王明明 《粘接》2012,(6):54-57
以环氧氯丙烷为交联剂,采用室温化学交联法制备了聚乙烯醇(PVA)水凝胶,研究了交联温度和交联时间对PVA溶胀性能和力学性能的影响,借助差示扫描量热法(DSC)和扫描电子显微镜(SEM)对PVA水凝胶进行分析表征。结果表明,当交联时间为3d且交联温度为50℃时PVA水凝胶的综合性能最佳。PVA的玻璃化转变温度为-54.50℃,PVA水凝胶中包含有自由水、束缚水和非冷冻水。  相似文献   

14.
Chemical crosslinked poly(vinyl chloride) (C‐PVC) was synthesized by vinyl chloride suspension polymerization in the presence of diallyl phthalate (DAP) and plasticized to prepare poly(vinyl chloride) (PVC) thermoplastic elastomer (TPE) materials. The chemical crosslinking and physical crosslinking structure in chemical crosslinked PVC‐TPE were investigated. It showed that the gel fraction and the crosslinking density of gel increased as the feed concentration of DAP increased. C‐PVC prepared by VC/DAP copolymerization was lightly crosslinked as compared with irradiation crosslinked PVC. Physical entanglements would greatly influence the crosslinking density of gel when the gel fraction was high. Chemical crosslinking had little influence on the recrystallization behavior of PVC. A structure model of chemical crosslinked PVC‐TPE was proposed, in which chemical networks acted with physical networks cooperatively. It also showed that chemical crosslinking and physical crosslinking influenced the processability and mechanical properties of chemical crosslinked PVC‐TPE cooperatively. Although the processability of PVC‐TPE deteriorated with chemical crosslinking, the dimension stability and elasticity of PVC‐TPE were improved as the permanent chemical networks were introduced. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 868–874, 2000  相似文献   

15.
粉煤灰常温发泡墙体砌块的研制   总被引:3,自引:0,他引:3  
张杰 《硅酸盐通报》2006,25(3):200-203
研究了以粉煤灰为主要材料,普通硅酸盐水泥为胶凝材料,配以外加剂,经物理活化、化学活化,在常温常压下发泡生产粉煤灰墙体砌块,并对影响砌块性能的因素进行了分析.  相似文献   

16.
Graft copolymers of alginate backbone and N-isopropylacrylamide/N-tert-butylacrylamide random copolymer, P(NIPAMx-co-NtBAMy), side chains (stickers) with various NtBAM content were designed and explored in aqueous media. Self-assembling thermoresponsive hydrogels are formed upon heating, in all cases, through the hydrophobic association of the P(NIPAMx-co-NtBAMy) sticky pendant chains. The rheological properties of the formulations depend remarkably on the NtBAM hydrophobic content, which regulates the lower critical solution temperature (LCST) and, in turn, the stickers’ thermo-responsiveness. The gelation point, Tgel, was shifted to lower temperatures from 38 to 20 °C by enriching the PNIPAM chains with 20 mol % NtBAM, shifting accordingly to the gelation temperature window. The consequences of the Tgel shift to the hydrogels’ rheological properties are significant at room and body temperature. For instance, at 37 °C, the storage modulus increases about two orders of magnitude and the terminal relaxation time increase about 10 orders of magnitude by enriching the stickers with 20 mol % hydrophobic moieties. Two main thermo-induced behaviors were revealed, characterized by a sol–gel and a weak gel–stiff gel transition for the copolymer with stickers of low (0.6 mol %) and high (14, 20 mol %) NtBAM content, respectively. The first type of hydrogels is easily injectable, while for the second one, the injectability is provided by shear-thinning effects. The influence of the type of media (phosphate buffer (PB), phosphate-buffered saline (PBS), Dulbecco’s modified Eagle’s medium (DMEM)) on the hydrogel properties was also explored and discussed. The 4 wt % NaALG-g-P(NIPAM80-co-NtBAM20)/DMEM formulation showed excellent shear-induced injectability at room temperature and instantaneous thermo-induced gel stiffening at body temperature, rendering it a good candidate for cell transplantation potential applications.  相似文献   

17.
In this paper, a new method combines chemical/physical crosslinking, and emulsification-foaming porogenic was adopted to prepare n-hydroxyapatite (n-HA)/polyvinyl alcohol (PVA)/chitosan (CS) porous composite hydrogel using artificial cornea scaffold materials. The fabricate conditions, including the type and amount of emulsification-foaming porogen, mixing time and speed etc. were researched. The results showed the optimal condition that the alkylphenol polyoxyethylene ether (OP) acted as emulsification-foaming porogen, with the ratio of WPVA/WOP as 3.75, and mixing 15 min with a stirring speed of 800 r·min-1. Additionally, the fabricated composite hydrogel scaffold materials possessed interconnected internal holes, a moisture content of above 65%, and tensile strength of above 6 MPa. In vitro cytotoxicity and acute systemic toxicity assay confirmed that the scaffolds did not show any cytotoxicity. The as-prepared hydrogel could be a promising candidate for artificial cornea scaffold material.  相似文献   

18.
Double‐network hydrogels were conveniently synthesized by the one‐shot radical polymerization of an ionic monomer for the first network and a non‐ionic monomer for the second network in the presence of crosslinkers by simultaneous addition of the monomers, that is, one‐shot and spontaneous two‐step polymerization accompanying the delay of polymerization of a second network monomer. We analyzed the polymerization process based on the conversion of each monomer during the reaction in the absence of crosslinkers. Then we fabricated the double‐network hydrogels using several polymerization systems consisting of a conjugated monomer and a non‐conjugated monomer in the presence of the dual crosslinkers. We analyzed the swelling, mechanical and viscoelastic properties of hydrogels synthesized by one‐shot radical polymerization to confirm the production mechanism and the network structure of the hydrogels. © 2020 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号