首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用废弃阴极射线管(CRT)玻璃取代河砂制备超高性能混凝土(UHPC),研究了废弃CRT玻璃对UHPC流动性、强度以及弯曲性能的影响,分析了UHPC的微观结构.结果 表明:掺加废弃CRT玻璃显著提高了UHPC的流动性,降低了其强度和能量吸收能力;当废弃CRT玻璃替代率为25%时,UHPC力学性能指标的降幅均小于5%;废...  相似文献   

2.
活性粉末混凝土的性能研究及应用   总被引:22,自引:4,他引:18  
朱英磊 《混凝土》2000,(7):31-34
活性粉末混凝土(RPC)是一种超高性能的混凝土,已经开始进入实用阶段。本文将介绍RPC的配比、生产工艺、力学性能及其应用,并讨论我国目前超高性能混凝土的研究及应用中存在的一些问题。  相似文献   

3.
在远海工程施工过程中可利用珊瑚礁砂替代石英砂制备超高性能混凝土。通过研究胶凝材料与珊瑚礁砂的比例和珊瑚礁粉取代珊瑚礁砂的比例,并测试其力学性能、耐久性和微观结构后,得出结论如下:珊瑚礁砂超高性能混凝土的最佳胶砂比为1∶1,珊瑚礁粉的最佳取代比例为30%,28 d抗压强度为137 MPa,28 d抗折强度为27 MPa,电通量为97 C,氯离子扩散性系数为30×10~(-14)m~2/s,可完全满足超高性能混凝土的指标要求。珊瑚礁砂超高性能混凝土的水化产物与普通混凝土并无太大差异,都水化生成了Ca(OH)_2,AFt和C-S-H凝胶,并相互交错形成密实的结构,同时在界面过渡区很难发现结晶完好的六方板状Ca(OH)_2晶体。  相似文献   

4.
5.
介绍了玄武岩纤维(BF)对混凝土高温损伤的抑制机理,从力学性能、质量损失、微观结构方面综述了玄武岩纤维混凝土(BFRC)的耐高温性能,并基于BFRC存在的主要问题对其未来研究方向进行了展望。  相似文献   

6.
7.
通过采用修正后的Andreasen-Andersen模型,将破碎细化后的多孔陶粒筛分成粒径分布在0.6~1.25 mm的骨料,等体积取代同粒径分布的河砂来制备超高性能混凝土。参照相关测试标准对其工作性能与力学性能进行了测试,同时设计落球试验对其抗冲击性能进行测试,并采用扫描电子显微镜对其断面进行了形貌分析。其中试块的抗压强度并未因陶粒的引入出现明显下滑,且28 d强度均超过120 MPa;当陶粒取代全部体积同粒径河砂时,试块的抗冲击性能相对标准组有了明显提升,且试块的抗冲击强度与陶粒替代同粒径河砂的体积分数呈正相关;而在SEM图中可观测到陶粒的多孔吸水结构,并在孔内部及周围观察到丰富的水化产物,在陶粒周围形成壳状的内养护区。  相似文献   

8.
本文研究了水胶比、硅灰、石英粉、粉煤灰对活性粉末混凝土(RPC)强度和流动性的影响。研究表明,采用福建省地方材料.可以配制出抗压强度超过160MPa的活性粉末混凝土。  相似文献   

9.
绿色环保型活性粉末混凝土制备技术的研究   总被引:1,自引:0,他引:1  
采用天然细集料、外掺料分别代替国内外超高性能混凝土中的石英粉和硅灰,在热水或蒸压养护条件下成功制备出抗压强度大于200MPa,抗折强度大于50MPa,拉压比大于0.27的超高性能混凝土材料,对不同养护制度下超高性能混凝土力学性能的发展规律进行研究,结果表明其具有广阔的前景。  相似文献   

10.
本文研究了水胶比、硅灰、石英粉、粉煤灰对活性粉末混凝土(RPC)强度和流动性的影响。研究表明,采用福建省地方材料.可以配制出抗压强度超过160MPa的活性粉末混凝土。  相似文献   

11.
掺超细粉煤灰活性粉末混凝土的研究   总被引:25,自引:0,他引:25  
采用525普能硅酸盐水泥、硅灰、超细粉煤灰、高效减水剂和标准砂等原材料及湿热养护工艺,可配制出抗压强度达200MPa的活性粉末混凝土,在掺入一定量的钢纤维后,活性粉末混凝土的抗压强度近250MPa,抗折强度达45MPa,对超细粉煤灰掺量、水胶比、砂胶比和钢纤维掺量等因素于掺超细粉煤灰活性粉末混凝土抗折、抗压强度的影响进行了详细的讨论。  相似文献   

12.
利用未经淡化处理的海砂配制了超高性能混凝土(UHPC),并研究了不同水胶比、砂胶比、胶凝材料体系、钢纤维掺量、养护制度对海砂UHPC的流动度、抗压强度、抗折强度的影响。试验结果表明:海砂UHPC的最优水胶比、砂胶比和纤维体积掺量分别为0.16、1.0和1.5%,最佳的胶凝材料体系组成是水泥、降黏剂和硅灰分别70%、15%和15%,最合适的热养护制度是70℃蒸汽养护;按照上述参数配制的海砂UHPC力学性能完全符合相关标准的要求。  相似文献   

13.
14.
为了研究玄武岩纤维混凝土的抗盐冻性能,以纤维体积率、冻融循环次数为主要变化参数,在3.5%NaCl溶液中对玄武岩纤维混凝土进行了快速冻融试验。研究了不同纤维掺量和不同冻融循环次数下混凝土的质量损失率、相对动弹性模量、抗压强度和抗折强度的变化规律;采用扫描电镜对混凝土盐冻循环前后的微观形貌进行观察,分析玄武岩纤维对混凝土抗盐冻性能的影响机理。结果表明:在盐冻循环作用下,玄武岩纤维的掺入能够有效降低混凝土的质量损失率,减缓其相对动弹性模量的降低,而且能减弱冻融损伤对混凝土抗压、抗折强度的影响;适量玄武岩纤维的掺入能抑制混凝土中裂缝的扩展,减少基体内孔隙、坑洞的数量,延迟初始裂缝和相互贯通裂缝的出现,抗盐冻能力优于普通混凝土。  相似文献   

15.
试验研究了钢纤维掺量(0、1%、2%)对超高性能混凝土(UHPC)收缩性能的影响,对比分析了5种常用的混凝土收缩预测模型对UHPC的适用性,并基于试验数据建立了适用于UHPC的收缩预测模型。结果表明:掺钢纤维UHPC的收缩应变低于未掺钢纤维的对比组,且钢纤维掺量越大,对UHPC的减缩效果越显著;5种常用的混凝土收缩预测模型对UHPC的适用性较低,其中,ACI 209(92)模型高估了UHPC的40 d后收缩应变,B3模型、CEBFIP 90模型和中国建科院模型低估了UHPC的收缩应变,GL2000模型对90 d龄期时的收缩应变预测值与试验值相对较为接近;建立的指数函数形式的UHPC收缩应变计算模型的精度较高。  相似文献   

16.
为了研究玄武岩纤维对活性粉末混凝土耐久性的影响,进行了9组玄武岩纤维活性粉末混凝土(RPC)和3组素RPC的氯离子渗透试验以及1组玄武岩纤维RPC的碳化性能试验。试验结果表明,素RPC的电通量为104~120 C,氯离子渗透性极低,玄武岩纤维RPC的电通量均小于100 C,氯离子渗透性可以忽略。当水胶比为0.22、玄武岩纤维体积掺量为0.10%时,试件的抗氯离子渗透性能最好。玄武岩纤维RPC试件具有良好的抗碳化性能,其28 d碳化深度为0。  相似文献   

17.
李剑锋 《广东建材》2022,(12):12-13+67
为更好地开展海砂UHPC配合比设计,研究了水胶比、砂胶比、硅灰、钢纤维等因素对海砂UHPC性能的影响,试验结果表明:水胶比越低,海砂UHPC强度越高;海砂UHPC的流动度随胶砂比增大而增大,抗压、抗折强度的变化规律为先增大后减小;随硅灰掺量增加,海砂UHPC的流动度、抗压强度、抗折强度均先增加后降低;随钢纤维体积掺量增加,海砂UHPC的流动度随之降低,抗压强度、抗折强度随之增加,其中钢纤维掺量对抗折强度影响极为显著。  相似文献   

18.
不锈钢管混凝土柱在海港工程、海洋工程等腐蚀环境下具有较好的应用前景。为进一步提升此类结构的性能,提出了一种组合结构,即内置钢骨的不锈钢管超高性能混凝土柱。同时,以径厚比、长径比和含骨率等为参数设计制作了6个短柱和8个中长柱试件,进行了轴心受压试验和有限元模拟分析,研究了试件的破坏形态、破坏机理,以及相关参数对试件力学性能的影响规律。结果表明:试件的承载力及延性随着径厚比和长径比的减小而增大,随着含骨率和内置钢骨强度的增加而增加;试件延性随着核心混凝土强度增大而降低,承载力与之相反。根据试验和有限元的分析结果,提出了内置钢骨的不锈钢管超高性能混凝土柱的承载力预测模型,为此类结构的工程应用提供了参考。  相似文献   

19.
本文采用Modified Andreasen&Andersen颗粒最密集堆积模型,设计制备了环境友好型石灰石粉基超高性能混凝土,并对其性能进行研究。结果表明:随着石灰石粉掺量的增加,UHPC浆体的剪切、应变和塑性粘度先减小后增大,对应浆体流动度先增大后减少,随着石灰石粉掺量增加,同一龄期UHPC强度逐渐下降,石灰石粉取代60%,水泥28d强度下降率为23.8%,石灰石粉的加入能明显降低放热总量和延迟水化放热最大峰值的时间,且电阻率突变时间与水化放热突变时间规律基本一致。随着石灰石粉掺量增加,环境成本逐渐降低,所需的绿化面积或树木逐渐减少。  相似文献   

20.
龚泳帆  杨建明  董虎  张垚  吴正光  王露 《混凝土》2023,(7):91-96+103
超高性能混凝土(Ultra high performance concrete,UHPC)是一种具有高强度、高韧性及优良耐久性的水泥基复合材料。研究了UHPC常用原材料组分及玄武岩纤维(Basalt fiber,BF)对UHPC流动性及力学性能发展的影响。试验研究结果表明:纤维的掺入使得UHPC流动性降低,且随着纤维掺量的增加,流动度逐渐减小,使用1%掺量的12 mm BF的试样获得最佳的抗压强度、抗折强度及良好的流动度;在标养情况下,UHPC的性能受水灰比影响较大,随着水灰比增大,UHPC新拌物流动性增加,强度逐渐减小;UHPC流动度随着灰砂比增大而增大,强度则表现为1∶1.2时最佳;硅灰掺量对UHPC性能影响相对较小;矿渣粉可考虑作为较佳的矿物掺合料选择。综合分析原材料组成为12 mm纤维掺量1%、水灰比0.17、灰砂比1∶1.2、硅灰掺量12.5%、减水剂掺量1.5%时UHPC性能最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号