共查询到20条相似文献,搜索用时 11 毫秒
1.
Bowei Jia Yan Wang Dajian Zhang Wanhong Li Hongli Cui Jun Jin Xiaoxi Cai Yang Shen Shengyang Wu Yongxia Guo Mingzhe Sun Xiaoli Sun 《International journal of molecular sciences》2021,22(22)
The CHYR (CHY ZINC-FINGER AND RING FINGER PROTEIN) proteins have been functionally characterized in iron regulation and stress response in Arabidopsis, rice and Populus. However, their roles in soybean have not yet been systematically investigated. Here, in this study, 16 GmCHYR genes with conserved Zinc_ribbon, CHY zinc finger and Ring finger domains were obtained and divided into three groups. Moreover, additional 2–3 hemerythrin domains could be found in the N terminus of Group III. Phylogenetic and homology analysis of CHYRs in green plants indicated that three groups might originate from different ancestors. Expectedly, GmCHYR genes shared similar conserved domains/motifs distribution within the same group. Gene expression analysis uncovered their special expression patterns in different soybean tissues/organs and under various abiotic stresses. Group I and II members were mainly involved in salt and alkaline stresses. The expression of Group III members was induced/repressed by dehydration, salt and alkaline stresses, indicating their diverse roles in response to abiotic stress. In conclusion, our work will benefit for further revealing the biological roles of GmCHYRs. 相似文献
2.
3.
Seong-Hoon Kim Rupesh Tayade Byeong-Hee Kang Bum-Soo Hahn Bo-Keun Ha Yoon-Ha Kim 《International journal of molecular sciences》2023,24(1)
Soybean [Glycine max (L.) Merr.], an important oilseed crop, is a low-cost source of protein and oil. In Southeast Asia and Africa, soybeans are widely cultivated for use as traditional food and feed and industrial purposes. Given the ongoing changes in global climate, developing crops that are resistant to climatic extremes and produce viable yields under predicted climatic conditions will be essential in the coming decades. To develop such crops, it will be necessary to gain a thorough understanding of the genetic basis of agronomic and plant root traits. As plant roots generally lie beneath the soil surface, detailed observations and phenotyping throughout plant development present several challenges, and thus the associated traits have tended to be ignored in genomics studies. In this study, we phenotyped 357 soybean landraces at the early vegetative (V2) growth stages and used a 180 K single-nucleotide polymorphism (SNP) soybean array in a genome-wide association study (GWAS) conducted to determine the phenotypic relationships among root traits, elucidate the genetic bases, and identify significant SNPs associated with root trait-controlling genomic regions/loci. A total of 112 significant SNP loci/regions were detected for seven root traits, and we identified 55 putative candidate genes considered to be the most promising. Our findings in this study indicate that a combined approach based on SNP array and GWAS analyses can be applied to unravel the genetic basis of complex root traits in soybean, and may provide an alternative high-resolution marker strategy to traditional bi-parental mapping. In addition, the identified SNPs, candidate genes, and diverse variations in the root traits of soybean landraces will serve as a valuable basis for further application in genetic studies and the breeding of climate-resilient soybeans characterized by improved root traits. 相似文献
4.
5.
6.
Siyu Zhang Yupeng Pan Chengchen Zhi Yujie Zheng Xiao Wang Xiaxia Li Zhihui Cheng 《International journal of molecular sciences》2021,22(17)
Garlic (Allium sativum L.) is an important vegetable and is cultivated and consumed worldwide for its economic and medicinal values. Garlic cloves, the major reproductive and edible organs, are derived from the axillary meristems. KNOTTED-like homeobox (KNOX) proteins, such as SHOOT MERISTEM-LESS (STM), play important roles in axillary meristem formation and development. However, the KNOX proteins in garlic are still poorly known. Here, 10 AsKNOX genes, scattered on 5 of the 8 chromosomes, were genome-wide identified and characterized based on the newly released garlic genome. The typical conserved domains of KNOX proteins were owned by all these 10 AsKNOX homologs, which were divided into two Classes (Class I and Class II) based on the phylogenetic analysis. Prediction and verification of the subcellular localizations revealed the diverse subcellular localization of these 10 AsKNOX proteins. Cis-element prediction, tissue expression analysis, and expression profilings in responding to exogenous GA3 and 6-BA showed the potential involvement of AsKNOX genes in the gibberellin and cytokinin signaling pathways. Overall, the results of this work provided a better understanding of AsKNOX genes in garlic and laid an important foundation for their further functional studies. 相似文献
7.
Lu Luo Qian Wan Zipeng Yu Kun Zhang Xiurong Zhang Suqing Zhu Yongshan Wan Zhaojun Ding Fengzhen Liu 《International journal of molecular sciences》2022,23(10)
Auxin response factors (ARFs) play important roles in plant growth and development; however, research in peanut (Arachis hypogaea L.) is still lacking. Here, 63, 30, and 30 AhARF genes were identified from an allotetraploid peanut cultivar and two diploid ancestors (A. duranensis and A. ipaensis). Phylogenetic tree and gene structure analysis showed that most AhARFs were highly similar to those in the ancestors. By scanning the whole-genome for ARF-recognized cis-elements, we obtained a potential target gene pool of AhARFs, and the further cluster analysis and comparative analysis showed that numerous members were closely related to root development. Furthermore, we comprehensively analyzed the relationship between the root morphology and the expression levels of AhARFs in 11 peanut varieties. The results showed that the expression levels of AhARF14/26/45 were positively correlated with root length, root surface area, and root tip number, suggesting an important regulatory role of these genes in root architecture and potential application values in peanut breeding. 相似文献
8.
9.
10.
Xianwen Meng Chen Wang Siddiq Ur Rahman Yaxu Wang Ailan Wang Shiheng Tao 《International journal of molecular sciences》2015,16(4):8517-8535
Proteins containing domains homologous to the E6-associated protein (E6-AP) carboxyl terminus (HECT) are an important class of E3 ubiquitin ligases involved in the ubiquitin proteasome pathway. HECT-type E3s play crucial roles in plant growth and development. However, current understanding of plant HECT genes and their evolution is very limited. In this study, we performed a genome-wide analysis of the HECT domain-containing genes in soybean. Using high-quality genome sequences, we identified 19 soybean HECT genes. The predicted HECT genes were distributed unevenly across 15 of 20 chromosomes. Nineteen of these genes were inferred to be segmentally duplicated gene pairs, suggesting that in soybean, segmental duplications have made a significant contribution to the expansion of the HECT gene family. Phylogenetic analysis showed that these HECT genes can be divided into seven groups, among which gene structure and domain architecture was relatively well-conserved. The Ka/Ks ratios show that after the duplication events, duplicated HECT genes underwent purifying selection. Moreover, expression analysis reveals that 15 of the HECT genes in soybean are differentially expressed in 14 tissues, and are often highly expressed in the flowers and roots. In summary, this work provides useful information on which further functional studies of soybean HECT genes can be based. 相似文献
11.
Liming Xia Xinhua He Xing Huang Haixia Yu Tingting Lu Xiaojie Xie Xuemei Zeng Jiawei Zhu Cong Luo 《International journal of molecular sciences》2022,23(3)
Members of the Mi14-3-3 gene family interact with target proteins that are widely involved in plant hormone signal transduction and physiology-related metabolism and play important roles in plant growth, development and stress responses. In this study, 14-3-3s family members are identified by the bioinformatic analysis of the mango (Mangifera indica L.) genome. The gene structures, chromosomal distributions, genetic evolution, and expression patterns of these genes and the physical and chemical properties and conserved motifs of their proteins are analysed systematically. The results identified 16 members of the 14-3-3 genes family in the mango genome. The members were not evenly distributed across the chromosomes, and the gene structure analysis showed that the gene sequence length and intron number varied greatly among the different members. Protein sequence analysis showed that the Mi14-3-3 proteins had similar physical and chemical properties and secondary and tertiary structures, and protein subcellular localization showed that the Mi14-3-3 family proteins were localized to the nucleus. The sequence analysis of the Mi14-3-3s showed that all Mi14-3-3 proteins contain a typical conserved PFAM00244 domain, and promoter sequence analysis showed that the Mi14-3-3 promoters contain multiple hormone-, stress-, and light-responsive cis-regulatory elements. Expression analysis showed that the 14-3-3 genes were expressed in all tissues of mango, but that their expression patterns were different. Drought, salt and low temperature stresses affected the expression levels of 14-3-3 genes, and different 14-3-3 genes had different responses to these stresses. This study provides a reference for further studies on the function and regulation of Mi14-3-3 family members. 相似文献
12.
13.
Akinori Saito Sayuri Tanabata Takanari Tanabata Seiya Tajima Manabu Ueno Shinji Ishikawa Norikuni Ohtake Kuni Sueyoshi Takuji Ohyama 《International journal of molecular sciences》2014,15(3):4464-4480
The application of combined nitrogen, especially nitrate, to soybean plants is known to strongly inhibit nodule formation, growth and nitrogen fixation. In the present study, we measured the effects of supplying 5 mM nitrate on the growth of nodules, primary root, and lateral roots under light at 28 °C or dark at 18 °C conditions. Photographs of the nodulated roots were periodically taken by a digital camera at 1-h intervals, and the size of the nodules was measured with newly developed computer software. Nodule growth was depressed approximately 7 h after the addition of nitrate under light conditions. The nodule growth rate under dark conditions was almost half that under light conditions, and nodule growth was further suppressed by the addition of 5 mM nitrate. Similar results were observed for the extending growth rate of the primary root as those for nodule growth supplied with 5 mM nitrate under light/dark conditions. In contrast, the growth of lateral roots was promoted by the addition of 5 mM nitrate. The 2D-PAGE profiles of nodule protein showed similar patterns between the 0 and 5 mM nitrate treatments, which suggested that metabolic integrity may be maintained with the 5 mM nitrate treatment. Further studies are required to confirm whether light or temperature condition may give the primary effect on the growth of nodules and roots. 相似文献
14.
Junhong Ye Yi Li Hua-Wei Liu Jifu Li Zhaoming Dong Qingyou Xia Ping Zhao 《International journal of molecular sciences》2016,17(8)
The silkworm (Bombyx mori) is an economically-important insect that can secrete silk. Carboxypeptidases have been found in various metazoan species and play important roles in physiological and biochemical reactions. Here, we analyzed the silkworm genome database and characterized 48 carboxypeptidases, including 34 metal carboxypeptidases (BmMCP1–BmMCP34) and 14 serine carboxypeptidases (BmSCP1–BmSCP14), to better understand their diverse functions. Compared to other insects, our results indicated that carboxypeptidases from silkworm have more family members. These silkworm carboxypeptidases could be divided into four families: Peptidase_M2 carboxypeptidases, Peptidase_M14 carboxypeptidases, Peptidase_S10 carboxypeptidases and Peptidase_S28 carboxypeptidases. Microarray analysis showed that the carboxypeptidases had distinct expression patterns, whereas quantitative real-time PCR demonstrated that the expression level of 13 carboxypeptidases significantly decreased after starvation and restored after re-feeding. Overall, our study provides new insights into the functional and evolutionary features of silkworm carboxypeptidases. 相似文献
15.
16.
17.
18.
19.
Kuijun She Wenqiu Pan Ying Yan Tingrui Shi Yingqi Chu Yue Cheng Bo Ma Weining Song 《International journal of molecular sciences》2022,23(21)
The hyperosmolality-gated calcium-permeable channel gene family (OSCA) is one kind of conserved osmosensors, playing a crucial role in maintaining ion and water homeostasis and protecting cellular stability from the damage of hypertonic stress. Although it has been systematically characterized in diverse plants, it is necessary to explore the role of the OSCA family in barley, especially its importance in regulating abiotic stress response. In this study, a total of 13 OSCA genes (HvOSCAs) were identified in barley through an in silico genome search method, which were clustered into 4 clades based on phylogenetic relationships with members in the same clade showing similar protein structures and conserved motif compositions. These HvOSCAs had many cis-regulatory elements related to various abiotic stress, such as MBS and ARE, indicating their potential roles in abiotic stress regulation. Furthermore, their expression patterns were systematically detected under diverse stresses using RNA-seq data and qRT-PCR methods. All of these 13 HvOSCAs were significantly induced by drought, cold, salt and ABA treatment, demonstrating their functions in osmotic regulation. Finally, the genetic variations of the HvOSCAs were investigated using the re-sequencing data, and their nucleotide diversity in wild barley and landrace populations were 0.4966 × 10−3 and 0.391 × 10−3, respectively, indicating that a genetic bottleneck has occurred in the OSCA family during the barley evolution process. This study evaluated the genomic organization, evolutionary relationship and genetic expression of the OSCA family in barley, which not only provides potential candidates for further functional genomic study, but also contributes to genetically improving stress tolerance in barley and other crops. 相似文献