首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HZSM-5 with high surface area of 625 m2/g was successfully synthesized by hydrothermal method at 160 °C for 72 h. The metal promoted on HZSM-5 catalyst was prepared by liquid ion exchange method. From XRD results, the addition of metals such as Co and Ni did not change the HZSM-5 structure. The metal/HZSM-5 showed lower crystallinity and surface area than the parent HZSM-5 because of the metal dispersion on the HZSM-5 surface. The metal contents of Co/HZSM-5 and Ni/HZSM-5 detected by EDX were less than 1 wt%. Catalytic fast pyrolysis of Jatropha waste using HZSM-5 and metals/HZSM-5 was investigated in terms of biomass to catalyst ratios (1:0, 1:1, 1:5 and 1:10) and types of metals (Co and Ni). From the results, it can be concluded that both biomass to catalyst ratios and the presence of metals had an effect on the increase in aromatic hydrocarbons yields as well as the decrease in the oxygenated and N-containing compounds. Both Co/HZSM-5 and Ni/HZSM-5 promoted the production of aliphatic compounds. Additionally, the PAHs compounds such as napthalenes and indenes, which caused the formation of coke, could be inhibited by metal/HZSM-5, particularly, Ni/HZSM-5. Among catalysts, Ni/HZSM-5 showed the highest hydrocarbon yield of 97.55% with N-containing compounds remained only 1.78%. The formation of hydrocarbon compounds increased the heating values of bio-oils while the elimination of the undesirable oxygenated compounds such as acids and ketones could alleviate problem regarding acidity and instability in bio oils.  相似文献   

2.
The main objective of the present work is to investigate the influence of nickel to cerium ratio on hydrogen exchanged Zeolite Socony Mobil-5 (HZSM-5) towards the catalytic upgrading of pine derived oxygenated pyrolysis vapours into aromatic hydrocarbon and phenol in pyrolysis oil via ex-situ fixed bed reactor. The presence of CeO2 could change electron density of Ni, promote the reduction of Ni species, accelerate the transfer of carbon species, and suppress the production of carbon deposits (17.53%–25.11%) compared with the parent HZSM-5 catalyst (28.95%); it also improved the hydrodeoxygenation ability of all xNiyCe/HZSM-5(nickel and cerium bimetal modified HZSM-5) catalysts, resulting increases in noncondensable gas content (from 31.46% to 52.99%–65.53%). Ni to Ce ratio of 1:1 and 1:2 produced highest aromatic hydrocarbon (32.14%) and phenols (55.51%) relative peak areas. The acid center of HZSM-5 and the metal acid center of the Ni:Ce = 1:1 catalyst obviously fine-tuned the formation of coke; and promoted hydrocarbon production. Moreover, high Ni content promoted alkylation of benzene at C6–C9 and increased C10+ PAHs relative peak area; high Ce content promoted the formation of olefin and Increasing the cleavage of C–O bonds and promoted hydrogenation or dehydrogenation, reduced polycyclic aromatic hydrocarbons and coke yield, and increased phenols and alkylphenols selectivity.  相似文献   

3.
Catalytic pyrolysis of particle board, a type of waste wood that is increasingly produced all over the world, was carried out over three types of zeolite catalysts: HBETA, HZSM-5, and Ga-impregnated HZSM-5 (Ga/HZSM-5). Experiments conducted using a batch reactor showed that the bio-oil yield and gas yield in catalytic pyrolysis were lower and higher than those in non-catalytic pyrolysis, respectively. Analysis of the bio-oil using pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) showed that the yields of high-value-added species such as aromatics and phenolics were increased to a large extent by catalytic upgrading, thus increasing the value of the product bio-oil. In particular, HZSM-5 exhibited high selectivity for aromatic compounds, and impregnation of Ga further increased the selectivity. HBETA could cause levoglucosans to decompose completely owing to its large pore size, resulting in increased yields of low-molecular-mass species.  相似文献   

4.
《能源学会志》2020,93(1):210-223
By introducing exogenous nitrogen during biomass pyrolysis under nitrogen-rich conditions, high-value nitrogen-containing products, i.e., nitrogen-rich char and oil may be produced. Based on the cogeneration of high-value nitrogen products from biomass, biomass nitrogen-enriched pyrolysis was performed in a fixed bed with different sources and contents of ammonia. The yields, composition and characteristics of the products were investigated. Moreover, the formation mechanism of N-containing species was explored in depth for the pyrolysis and catalytic pyrolysis with HZSM-5 and Zn/HZSM-5 catalysts via elemental analysis, XPS, FTIR and BET. The results showed that ammonia impregnation could promote a Maillard reaction, reduce the content of small aldehydes and ketones, and produce a nitrogen-enriched bio-oil. The contents of N-containing species and phenolic substances in the pyrolysis oil of biomass impregnated with 10% urea reached 15.66% and 56.69%, respectively. Moreover, the nitrogen on the coke surface after pretreatment was mainly composed of CN, CN and NCOO functional groups. The bio-char generated abundant pyridinic-N, pyrrolic-N, quaternary-N, and pyridone-N oxides. The presence of urea introduced many alkaline N-containing functional groups on the surface of the bio-char and promoted the transformation of nitrogen from amides and imides to heterocyclic nitrogen with higher thermal stability. Furthermore, Zn was an excellent catalyst for the Maillard reaction, and the Zn/HZSM-5 catalyst had a higher selectivity for aromatic hydrocarbons (96.98% for biomass and 86.48% for urea/biomass) and N-containing heterocyclic compounds, such as indoles (6.16% for biomass and 13.51% for urea/biomass). Additionally, the coke content decreased, and the catalyst deactivation decreased.  相似文献   

5.
Pyrolysis-catalysis of high density polyethylene (HPDE) was carried out in a fixed bed, two stage reactor for the production of upgraded aromatic pyrolysis oils. The catalysts investigated were Y-zeolite impregnated with transition metal promoters with 1 wt% and 5 wt% metal loading of Ni, Fe, Mo, Ga, Ru and Co to determine the influence on aromatic fuel composition. Pyrolysis of the HDPE took place at 600 °C in the first stage of the reactor system and the evolved pyrolysis gases were passed to the second stage catalytic reactor, which had been pre-heated to 600 °C. Loading of metals on the Y-zeolite catalyst led to a higher production of aromatic hydrocarbons in the product oil with greater concentration of single ring aromatic hydrocarbons produced. The single ring aromatic compounds consisted of mainly toluene, ethylbenzene and xylenes, while the 2-ring hydrocarbons were mainly naphthalene and their alkylated derivatives. There was a reduction in the production of multiple ring aromatic compounds such as, phenanthrene and pyrene. The addition of the promoter metals appeared to have only a small influence on aromatic oil content, but increased the hydrogen yield from the HDPE. However, there was significant carbon deposition on the catalysts in the range 14–22 wt% for the 1% metal-Y-zeolite catalysts and increased to 18–26 wt% for the 5 wt% metal-Y-zeolite catalysts.  相似文献   

6.
《能源学会志》2020,93(5):1833-1847
The high concentration of oxygenated compounds in pyrolytic products prohibits the conversion of hemicellulose to important biofuels and chemicals via fast pyrolysis. Herein CaO and HZSM-5 was developed to convert xylan and LDPE to valuable hydrocarbons by thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and elucidate the reaction mechanism were also investigated in detail. The results indicated that xylan/LDPE copyrolysis was more complicated than pyrolysis of the individual components. LDPE hindered the thermal decomposition and aromatic hydrocarbon formation from xylan at temperatures under 350 °C and had a synergistic effect at high temperatures. 50% LDPE was proven to be more beneficial than other percentages for the formation of monocyclic aromatic hydrocarbons. Simultaneously, the addition of CaO/HZSM-5 significantly reduced the reaction Ea and increased the reaction rate. CaO can effectively improve the deoxygenation and aromatization reaction, enhancing the yield and selectivity of aromatics to a certain extent. The maximum yield of hydrocarbons (96.01%), mono-aromatic hydrocarbons (88.53%) and SBTXE (85.79%) were obtained at a CaO/HZSM-5 ratio of 1:2, a pyrolysis temperature of 450 °C, a catalytic temperature of 550 °C, a catalyst dose of 1:2 and a xylan-to-LDPE ratio of 1:1 via an ex situ process. The system was dominated by toluene, xylene and alkyl benzene. Diels-Alder reactions of furans and hydrocarbon pool mechanism of nonfuranic compounds improved aromatic formation. This study provides a fundamental for recovering energy and chemicals from pyrolysis of hemicellulose.  相似文献   

7.
Jatropha curcas waste was subjected to catalytic pyrolysis at 873 K using an analytical pyrolysis–gas chromatography/mass spectrometry in order to investigate the relative effect of various metal oxide/activated carbon (M/AC) catalysts on upgrading bio-oil from fast pyrolysis vapors of Jatropha waste residue. A commercial AC support was impregnated with Ce, Pd, Ru or Ni salts and calcined at 523 K to yield the 5 wt.% M/AC catalysts, which were then evaluated for their catalytic deoxygenation ability and selectivity towards desirable compounds. Without a catalyst, the main vapor products were fatty acids of 60.74% (area of GC/MS chromatogram), while aromatic and aliphatic hydrocarbon compounds were presented at only 11.32%. Catalytic pyrolysis with the AC and the M/AC catalysts reduced the oxygen-containing (including carboxylic acids) products in the pyrolytic vapors from 73.68% (no catalyst) to 1.60–36.25%, with Ce/AC being the most effective catalyst. Increasing the Jatropha waste residue to catalyst (J/C) ratio to 1:10 increased the aromatic and aliphatic hydrocarbon yields in the order of Ce/AC > AC > Pd/AC > Ni/AC, with the highest total hydrocarbon proportion obtained being 86.57%. Thus, these catalysts were effective for deoxygenation of the pyrolysis vapors to form hydrocarbons, with Ce/AC, which promotes aromatics, Pd/AC and Ni/AC as promising catalysts. In addition, only a low yield (0.62–7.80%) of toxic polycyclic aromatic hydrocarbons was obtained in the catalytic fast pyrolysis (highest with AC), which is one advantage of applying these catalysts to the pyrolysis process. The overall performance of these catalysts was acceptable and they can be considered for upgrading bio-oil.  相似文献   

8.
HZSM-5 zeolites are active materials in dimethyl ether (DME) production with high surface acidity. In this study, hierarchical HZSM-5 catalysts were synthesized with steam-assisted crystallization (SAC) method and then in order to increase its surface acidity, TPA was loaded into the HZSM-5 catalyst having various mass ratios (5, 10, 25%) by wet impregnation method. Synthesized catalysts were characterized by N2 physisorption (BET analysis), X-Ray diffraction and pyridine adsorbed diffuse reflectance FTIR spectroscopy techniques. Characterization analysis of tungstophosphoric acid (TPA) impregnated catalysts indicated that hierarchical HZSM-5 possesses mesoporous structures. The average pore size distribution of TPA impregnated HZSM-5 catalysts were between 17 and 20 nm. TPA impregnation promoted Brønsted acid sites of the catalyst, which favors methanol dehydration reaction. Activity tests have been performed at reaction temperatures of 200–300 °C at 50 bar reaction pressure in the presence of admixed catalysts (physically mixed commercial HifuelR-120 and HZSM-5 based catalysts with a weight ratio of 1:1). Results revealed that the increase in the amount of heteropoly acid has enhanced DME selectivity and CO conversion. Maximum DME selectivity of 57% and CO conversion of 46% were achieved in the presence of the 25TPA@HZSM-5 catalyst at the optimum reaction temperature of 275 °C. TGA analysis result of spent catalysts presented the highest amount of coke over HZSM-5. TPA incorporation decreased coke formation due to suppression of the Lewis acid site, which is responsible for the coke formation.  相似文献   

9.
《能源学会志》2019,92(6):1997-2003
The microwave-assisted catalytic pyrolysis (MACP) of cellulose was carried out using modified HZSM-5 catalysts for bio-oil production. The catalysts of Fe/HZSM-5, Ni/HZSM-5 and Fe–Ni/HZSM-5 were developed and characterized by the X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The bio-oil was characterized by the Fourier transform infrared analyzer (FTIR) and gas chromatography/mass spectrometry (GC/MS). Results showed that Fe/HZSM-5 enhanced the yields of bio-oil by 11.4% and decreased the coke by about 24% compared to HZSM-5 without modification. The saccharides in bio-oil disappeared and were totally converted into phenols and low molecular compounds with the catalysis of Fe–Ni/HZSM-5. Fe–Ni/HZSM-5 showed high selectivity of phenols (20.86%) in the bio-oil. It was a unique finding because usually phenols can only be obtained by the pyrolysis of lignin, not cellulose. The formation of phenols from MACP of cellulose was probably caused by the conversion of furans to aromatics in the pores of HZSM-5, and followed by further conversion of aromatics into phenols on the external surface of HZSM-5.  相似文献   

10.
Soybean oil was pyrolyzed with various catalysts in a fixed-bed reactor under nitrogen flow at 420 and 450 °C. The H-ZSM5 catalysts (molar ratio SiO2/Al2O3 = 28, 40, and 180) and 2 wt% (Ga, Al or Cu) impregnated MCM41 catalysts were used in order to investigate the effect of catalysts during the pyrolysis process. The gas products in all experiments were mainly methane, ethane and propylene. The liquid products in the presence of H-ZSM5 catalysts were mainly aromatic components while those with metal/MCM41 catalysts were a mixture of alkanes, alkenes, alkadienes, aromatic and carboxylic acids. The highest coke yield of 4.4 wt% was obtained with Ga/MCM41 catalyst at the pyrolysis temperature of 420 °C. The effect of catalysts on product yield and composition was systematically investigated.  相似文献   

11.
Ni/HZSM-5 catalysts were prepared using the impregnation method. The HZSM-5 and impregnated Ni/HZSM-5 catalysts were characterized by Brunauer–Emmett–Teller and X-ray diffraction. The HZSM-5 and Ni/HZSM-5 catalysts were used for prairie cordgrass (PCG) thermal conversion in a two-stage catalytic pyrolysis system. The products contained gas, bio-oil, and bio-char. The gas and bio-oil were analyzed by gas chromatography and gas chromatography–mass spectrometry separately. Higher heating values and elemental composition of bio-char were determined. The results indicated that 12% Ni/HZSM-5 treatment yielded the highest amount of gasoline fraction for hydrocarbons and showed a robust ability to upgrade bio-oil vapor.  相似文献   

12.
采用等体积浸渍法在HZSM-5分子筛上引入Ga2O3,探究Ga改性HZSM-5分子筛对2-甲基呋喃(MF)和甲醇在固定床反应器中进行偶合反应的产物分布的影响。采用XRD、HTEM、BET和NH3-TPD对催化剂的理化性质进行表征,结果显示,Ga的负载使得HZSM-5比表面积和孔容减小,改变了HZSM-5的酸类型及酸位强度分布。偶合反应结果表明,Ga的负载能够促进MF和甲醇的转化,Ga/HZSM-5不仅可以提高芳香烃的产率,而且提高了芳香烃产物中BTX的选择性。与HZSM-5相比,0.1%Ga/HZSM-5在反应温度为500℃、MF与甲醇摩尔比为1∶2、WHSV为2 h−1反应条件下,使芳香烃产率从14.6%提高到23.7%,而BTX的选择性则从55.2%提高到67.8%。  相似文献   

13.
《能源学会志》2019,92(5):1348-1363
In order to understand the pyrolysis mechanism, reaction kinetic and product properties of biomass and select suitable agricultural and forestry residues for the generation desired products, the pyrolysis and catalytic pyrolysis characteristics of three main components (hemicellulose, cellulose, and lignin) of biomass were investigated using a thermogravimetric analyzer (TGA) with a fixed-bed reactor. Fourier transform infrared spectroscopy (FTIR) and elemental analysis were used for further characterization. The results showed that: the thermal stability of hemicellulose was the worst, while that of cellulose was higher with a narrow range of pyrolysis temperatures. Lignin decomposed over a wider range of temperatures and generated a higher char yield. After catalytic pyrolysis over HZSM-5 catalyst, the conversion ratio increased. The ratio for the three components was in the following order: lignincellulose < biomass < xylan. The Starink method was introduced to analyze the thermal reaction kinetics, activation energy (Ea), and the pre-exponential factor (A). The addition of HZSM-5 improved the reactivity and decreased the activation energy in the following order: xylan (30.54%) > biomass(15.41%) > lignin (14.75%) > cellulose (6.73%). The pyrolysis of cellulose gave the highest yield of bio-oil rich in levoglucosan and other anhydrosugars with minimal coke formation. Xylan gave a high gas yield and moderate yield of bio-oil rich in furfural, while lignin gave the highest solid residue and produced the lowest yield of bio-oil that was rich in phenolic compounds. After catalytic pyrolysis, xylan gave the highest yield of monocyclic aromatic hydrocarbons, 76.40%, and showed selectivity for benzene and toluene. Cellulose showed higher selectivity for xylene and naphthalene; however, lignin showed enhanced for selectivity of C10 + polycyclic aromatic hydrocarbons. Thus, catalytic pyrolysis method can effectively improve the properties of bio-oil and bio-char.  相似文献   

14.
Rapid catalytic thermal conversion of Physic nut (Jatropha curcas) residues for upgrading the released vapors was performed using analytical pyrolyzer-gas chromatography/mass spectrometry at 873 K. Conditioning of the evolved vapor product is required since the main vapor products formed without catalysts typically contained around 60% fatty acids, while the total hydrocarbon yields were only 12%. Catalysts tested were alumina (Al2O3) alone and modified by 5 wt% impregnation with various transition metal salts and then calcined to metal oxides. A significant decrease in the proportion of oxygenated compounds (including acids) from 73% without a catalyst to less than 10% with, and an increased conversion to hydrocarbons of more than 70% was obtained with the metal/Al2O3 catalysts at a Jatropha:catalyst (J:C) ratio of 1:10. The product selectivity was greatly increased as the J:C ratio was increased from 1:1 to 1:10. The total hydrocarbon selectivity of the metal/Al2O3 catalysts was increased in the order of Pd > Ni > Ce > Ru > La > none > Co > Mo, with the highest proportion of total hydrocarbons obtained being 75%. In addition, only a low yield (<2%) of polycyclic aromatic hydrocarbons was obtained from the conversion of Jatropha curcas residues. However, these catalysts adversely promoted N-containing compounds, suggesting that a further denitrogenation process is necessary. Nevertheless, the overall performance of these transition metal/Al2O3 catalysts is acceptable and they can be considered as good candidates for bio-oil upgrading.  相似文献   

15.
采用热裂解−气质联用(Py-GC/MS)技术研究Chaetoceros sp. 硅藻粉末的催化热解特性。以HZSM-5为催化剂,考察了不同Si/Al比的HZSM-5催化剂对硅藻热解产物的影响,并考察了催化剂的使用量、热解升温速率、热解反应时间对产物的影响。结果表明:未加催化剂时,硅藻热解产物以脂肪酸为主,含量为50.05%,苯系物含量仅为0.87%;加入HZSM-5催化剂后,硅藻热解产物中脂肪酸含量减少,芳香类化合物显著增加。热解实验结果发现,Si/Al比为38、硅藻和HZSM-5比例为1∶9、热解速率10 000℃/s、热解时间为10 s时,能得到较理想的热解产品,其中苯系物产率可达57.76%,脂肪酸含量为2.63%。这说明HZSM-5(38)具有较好的脱氧和芳构化功能,有利于硅藻催化热解生成高品质的生物油产品。  相似文献   

16.
The CuZnAl/HZSM-5, CuZnAlCr/HZSM-5, CuZnAlZr/HZSM-5, CuZnAlCo/HZSM-5, and CuZnAlCe/HZSM-5 catalysts that were prepared by a co-precipitation method was used for hydrogen production from steam reforming of dimethyl ether (SRD) in a metal foam micro-reactor. These catalysts were characterized by means of XRD, TPR, SEM and BET surface areas. The results showed that promoter Cr can reduce the average pore diameter and reduction temperature of catalyst. The conversion of dimethyl ether and hydrogen yield reaches 99% and 95% respectively over CuZnAlCr/HZSM-5 catalyst under a relatively lower reaction temperature. The obtained hydrogen-riched gas is easy to purify and meet the need of polymer electrolyte membrane fuel cell. The effects of reaction temperature, space velocity and steam to DME ratio on SRD were investigated in a metal foam micro-reactor. At the conditions of T = 250 °C, the space velocity of 3884 ml/(g h), steam to DME = 5, DME conversion of >97% were obtained over the CuZnAlCr/HZSM-5 catalyst without obvious deactivation during 50 h.  相似文献   

17.
Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was employed to achieve fast pyrolysis of xylan and on-line analysis of pyrolysis vapors. Tests were conducted to investigate the effects of temperature on pyrolytic products, and to reveal the effect of HZSM-5 and M/HZSM-5 (M= Fe, Zn) zeolites on pyrolysis vapors. The results showed that the total yield of pyrolytic products first increased and then decreased with the increase of temperature from 350°C to 900°C. The pyrolytic products were complex, and the most abundant products included hydroxyacetaldehyde, acetic acid, 1-hydroxy-2-propanone, 1-hydroxy-2-butanone and furfural. Catalytic cracking of pyrolysis vapors with HZSM-5 and M/HZSM-5 (M= Fe, Zn) catalysts significantly altered the product distribution. Oxygen-containing compounds were reduced considerably, and meanwhile, a lot of hydrocarbons, mainly toluene and xylenes, were formed. M/HZSM-5 catalysts were more effective than HZSM-5 in reducing the oxygen-containing compounds, and therefore, they helped to produce higher contents of hydrocarbons than HZSM-5.  相似文献   

18.
开发一系列用于酚醛树脂快速热解的Ga改性ZSM-5催化剂,并进行全面的催化剂表征,包括X射线衍射(XRD)、氮气吸附脱附、氨气程序升温吸附(NH3-TPD)和透射电子显微镜(TEM)等,以阐明催化剂的结构特性。Ga物种显著调节了ZSM-5分子筛酸性位点的分布和孔结构,有利于高温下促进热解脱氧反应的进行,同时优化了择形催化性能。重点讨论了Ga负载量、热解温度、催化剂与酚醛树脂质量比和升温速率等参数对热解油组成分布的影响规律。与母体H-ZSM-5催化剂相比,0.5Ga/ZSM-5在酚醛树脂快速热解中催化生产单环芳烃的效率更高,且更能有效抑制酚类化合物的生成。当热解温度为800℃、升温速率为10℃/ms时,单环芳烃的相对含量达到64.1%。  相似文献   

19.
《能源学会志》2020,93(2):605-613
The Fe-, Co-, Cu-loaded HZSM-5 zeolites were prepared via impregnation method. The upgrading by catalyst on biomass pyrolysis vapors was conducted over modified zeolites to investigate their catalytic upgrading performance and anti-coking performance. The Brønsted acid sites amount on Cu-,Co-loaded HZSM-5 decreased sharply, while that of Lewis both increased. The yield of liquid fraction and refined bio-oil over metal loaded ZSM-5 catalysts decreased, while that of char almost kept constant. The physical property of refined bio-oil was promoted in terms of pH value, dynamic viscosity and higher heating value (HHV). FT-IR analysis revealed that the chemical structure of refined bio-oil obtained over Fe-, Co-, Cu-loaded HZSM-5 zeolites was highly similar. The yield of monocyclic aromatic and aliphatic hydrocarbon over Fe-,Co-loaded HZSM-5 were boosted by around 2.5 times compared with original ZSM-5 zeolites. Data analysis revealed that Cu/HZSM-5 presented the worst deoxygenation ability. The anti-coking capability of Fe/HZSM-5 was obviously better, i.e., the coke content showed an approximate decrease of 38%. Thus, this study provided an efficient Fe/HZSM-5 catalysts for preparation of bio-oil derived from catalytic upgrading of biomass pyrolysis vapor.  相似文献   

20.
《能源学会志》2020,93(1):15-24
Catalytic fast pyrolysis of sawdust was investigated over HZSM-5 zeolites (SiO2/Al2O3 = 25, 50 and 80) in a drop tube quartz reactor for production of green aromatics and olefins. The effects of temperature, weight hourly space velocity (WHSV), SiO2/Al2O3 ratio and atmosphere on yield and selectivity of aromatics were investigated. The results show that almost all small organic oxygen species in initial volatiles were converted into gaseous hydrocarbons and aromatics after in situ catalysis of HZSM-5. HZSM-5 whose SiO2/Al2O3 is 25 exhibited the best performance with the aromatics yield of 21.8% on carbon basis at 500 °C. However, HZSM-5 can act as cracking and aromatization catalyst, but not as an agent to promote hydrogenation. The ESI-MS revealed the most abundant macromolecular compounds in initial volatiles were O1O27 species with 0–20 double bond equivalent (DBE) values and 5–40 carbon numbers, while the macromolecules were O1O9 species with 2–12 DBE and 10–25 carbon numbers after upgrading. Furthermore, the formation of coke on catalysts was influenced by the properties of HZSM-5 and experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号