共查询到2条相似文献,搜索用时 0 毫秒
1.
Matthias Roesslein Cordula Hirsch Jean-Pierre Kaiser Harald F. Krug Peter Wick 《International journal of molecular sciences》2013,14(12):24320-24337
The release of reactive oxygen species (ROS) during the electron transport of mitochondrial aerobic respiration is the major source of ROS. However, contact between cells and nanoparticles (NPs) can also induce release of ROS, leading to an imbalance towards the pro-oxidative state. At low levels of ROS production, cells initiate a protective response to guarantee their survival, but an excess of ROS can damage cellular compounds such as membranes and various organelles, or directly cause genotoxicity. Thus an elevated level of ROS is an important indicator of cellular stress and an accurate recording of this parameter would be very informative. ROS can be measured by various assays, but all known assays measuring and quantifying ROS possess certain weaknesses. The problems and challenges of quantitatively detecting ROS in vitro using the 2′,7′-dichlorodihydrofluorescein (DCF) assay is discussed as an example. In addition, we debate the difficulties in finding a suitable and stable chemical reaction control for the DCF assay (or other ROS-detecting assays). As a conclusion, we believe that using 3-morpholinosydnonimine hydrochloride (Sin-1) as a ROS inducer in the DCF assay is feasible only qualitatively. However, a quantitative measurement of the absolute amount of ROS produced and a quantitative comparison between experiments is (at the moment) impossible. 相似文献
2.
Raffaella Giancola Francesco Oliva Marialucia Gallorini Noemi Michetti Clarissa Gissi Fadl Moussa Cristina Antonetti Lamorgese Passeri Alessia Colosimo Anna Concetta Berardi 《International journal of molecular sciences》2022,23(23)
Rotator cuff tendon (RCT) disease results from multifactorial mechanisms, in which inflammation plays a key role. Pro-inflammatory cytokines and tendon stem cell/progenitor cells (TSPCs) have been shown to participate in the inflammatory response. However, the underlying molecular mechanism is still not clear. In this study, flow cytometry analyses of different subpopulations of RCT-derived TSPCs demonstrate that after three days of administration, TNFα alone or in combination with IFNγ significantly decreases the percentage of CD146+CD49d+ and CD146+CD49f+ but not CD146+CD109+ TSPCs populations. In parallel, the same pro-inflammatory cytokines upregulate the expression of CD200 in the CD146+ TSPCs population. Additionally, the TNFα/IFNγ combination modulates the protein expression of STAT1, STAT3, and MMP9, but not fibromodulin. At the gene level, IRF1, CAAT (CAAT/EBPbeta), and DOK2 but not NF-κb, TGRF2 (TGFBR2), and RAS-GAP are modulated. In conclusion, although our study has several important limitations, the results highlight a new potential role of CD200 in regulating inflammation during tendon injuries. In addition, the genes analyzed here might be new potential players in the inflammatory response of TSPCs. 相似文献