共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vladimir Sukhorukov Dmitry Voronkov Tatiana Baranich Natalia Mudzhiri Alina Magnaeva Sergey Illarioshkin 《International journal of molecular sciences》2021,22(19)
Aging is associated with a decline in cognitive function, which can partly be explained by the accumulation of damage to the brain cells over time. Neurons and glia undergo morphological and ultrastructure changes during aging. Over the past several years, it has become evident that at the cellular level, various hallmarks of an aging brain are closely related to mitophagy. The importance of mitochondria quality and quantity control through mitophagy is highlighted by the contribution that defects in mitochondria–autophagy crosstalk make to aging and age-related diseases. In this review, we analyze some of the more recent findings regarding the study of brain aging and neurodegeneration in the context of mitophagy. We discuss the data on the dynamics of selective autophagy in neurons and glial cells during aging and in the course of neurodegeneration, focusing on three mechanisms of mitophagy: non-receptor-mediated mitophagy, receptor-mediated mitophagy, and transcellular mitophagy. We review the role of mitophagy in neuronal/glial homeostasis and in the molecular pathogenesis of neurodegenerative disorders, such as Parkinson’s disease, Alzheimer’s disease, and other disorders. Common mechanisms of aging and neurodegeneration that are related to different mitophagy pathways provide a number of promising targets for potential therapeutic agents. 相似文献
3.
Rita Polito Irene Di Meo Michelangela Barbieri Aurora Daniele Giuseppe Paolisso Maria Rosaria Rizzo 《International journal of molecular sciences》2020,21(23)
Adiponectin is an adipokine produced by adipose tissue. It has numerous beneficial effects. In particular, it improves metabolic effects and glucose homeostasis, lipid profile, and is involved in the regulation of cytokine profile and immune cell production, having anti-inflammatory and immune-regulatory effects. Adiponectin’s role is already known in immune diseases and also in neurodegenerative diseases. Neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, are a set of diseases of the central nervous system, characterized by a chronic and selective process of neuron cell death, which occurs mainly in relation to oxidative stress and neuroinflammation. Lifestyle is able to influence the development of these diseases. In particular, unhealthy nutrition on gut microbiota, influences its composition and predisposition to develop many diseases such as neurodegenerative diseases, given the importance of the “gut-brain” axis. There is a strong interplay between Adiponectin, gut microbiota, and brain-gut axis. For these reasons, a healthy diet composed of healthy nutrients such as probiotics, prebiotics, polyphenols, can prevent many metabolic and inflammatory diseases such as neurodegenerative diseases and obesity. The special Adiponectin role should be taken into account also, in order to be able to use this component as a therapeutic molecule. 相似文献
4.
Angelika Krl-Grzymaa Edyta Sienkiewicz-Szapka Ewa Fiedorowicz Dominika Rozmus Anna Cieliska Andrzej Grzybowski 《International journal of molecular sciences》2022,23(17)
Biological material is one of the most important aspects that allow for the correct diagnosis of the disease, and tears are an interesting subject of research because of the simplicity of collection, as the well as the relation to the components similar to other body fluids. In this review, biomarkers for Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS) in tears are investigated and analyzed. Records were obtained from the PubMed and Google Scholar databases in a timeline of 2015–2022. The keywords were: tear film/tear biochemistry/tear biomarkers + diseases (AD, PD, or MS). The recent original studies were analyzed, discussed, and biomarkers present in tears that can be used for the diagnosis and management of AD, PD, and MS diseases were shown. α-synTotal and α-synOligo, lactoferrin, norepinephrine, adrenaline, epinephrine, dopamine, α-2-macroglobulin, proteins involved in immune response, lipid metabolism and oxidative stress, apolipoprotein superfamily, and others were shown to be biomarkers in PD. For AD as potential biomarkers, there are: lipocalin-1, lysozyme-C, and lacritin, amyloid proteins, t-Tau, p-Tau; for MS there are: oligoclonal bands, lipids containing choline, free carnitine, acylcarnitines, and some amino acids. Information systematized in this review provides interesting data and new insight to help improve clinical outcomes for patients with neurodegenerative disorders. 相似文献
5.
6.
7.
Neurodegenerative disorders involve the slow and gradual degeneration of axons and neurons in the central nervous system (CNS), resulting in abnormalities in cellular function and eventual cellular demise. Patients with these disorders succumb to the high medical costs and the disruption of their normal lives. Current therapeutics employed for treating these diseases are deemed palliative. Hence, a treatment strategy that targets the disease’s cause, not just the symptoms exhibited, is desired. The synergistic use of nanomedicine and gene therapy to effectively target the causative mutated gene/s in the CNS disease progression could provide the much-needed impetus in this battle against these diseases. This review focuses on Parkinson’s and Alzheimer’s diseases, the gene/s and proteins responsible for the damage and death of neurons, and the importance of nanomedicine as a potential treatment strategy. Multiple genes were identified in this regard, each presenting with various mutations. Hence, genome-wide sequencing is essential for specific treatment in patients. While a cure is yet to be achieved, genomic studies form the basis for creating a highly efficacious nanotherapeutic that can eradicate these dreaded diseases. Thus, nanomedicine can lead the way in helping millions of people worldwide to eventually lead a better life. 相似文献
8.
Giovanni Schepici Placido Bramanti Emanuela Mazzon 《International journal of molecular sciences》2020,21(22)
Sulforaphane (SFN) is a phytocompound belonging to the isothiocyanate family. Although it was also found in seeds and mature plants, SFN is mainly present in sprouts of many cruciferous vegetables, including cabbage, broccoli, cauliflower, and Brussels sprouts. SFN is produced by the conversion of glucoraphanin through the enzyme myrosinase, which leads to the formation of this isothiocyanate. SFN is especially characterized by antioxidant, anti-inflammatory, and anti-apoptotic properties, and for this reason, it aroused the interest of researchers. The aim of this review is to summarize the experimental studies present on Pubmed that report the efficacy of SFN in the treatment of neurodegenerative disease, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS). Therefore, thanks to its beneficial effects, SFN could be useful as a supplement to counteracting neurodegenerative diseases. 相似文献
9.
10.
Noemi Sola-Sevilla Ana Ricobaraza Ruben Hernandez-Alcoceba Maria S. Aymerich Rosa M. Tordera Elena Puerta 《International journal of molecular sciences》2021,22(6)
Sirtuin 2 (SIRT2) has been associated to aging and age-related pathologies. Specifically, an age-dependent accumulation of isoform 3 of SIRT2 in the CNS has been demonstrated; however, no study has addressed the behavioral or molecular consequences that this could have on aging. In the present study, we have designed an adeno-associated virus vector (AAV-CAG-Sirt2.3-eGFP) for the overexpression of SIRT2.3 in the hippocampus of 2 month-old SAMR1 and SAMP8 mice. Our results show that the specific overexpression of this isoform does not induce significant behavioral or molecular effects at short or long term in the control strain. Only a tendency towards a worsening in the performance in acquisition phase of the Morris Water Maze was found in SAMP8 mice, together with a significant increase in the pro-inflammatory cytokine Il-1β. These results suggest that the age-related increase of SIRT2.3 found in the brain is not responsible for induction or prevention of senescence. Nevertheless, in combination with other risk factors, it could contribute to the progression of age-related processes. Understanding the specific role of SIRT2 on aging and the underlying molecular mechanisms is essential to design new and more successful therapies for the treatment of age-related diseases. 相似文献
11.
Rúben G. R. Pinheiro Ana Joyce Coutinho Marina Pinheiro Ana Rute Neves 《International journal of molecular sciences》2021,22(21)
The blood–brain barrier (BBB) is a barrier that separates the blood from the brain tissue and possesses unique characteristics that make the delivery of drugs to the brain a great challenge. To achieve this purpose, it is necessary to design strategies to allow BBB passage, in order to reach the brain and target the desired anatomic region. The use of nanomedicine has great potential to overcome this problem, since one can modify nanoparticles with strategic molecules that can interact with the BBB and induce uptake through the brain endothelial cells and consequently reach the brain tissue. This review addresses the potential of nanomedicines to treat neurological diseases by using nanoparticles specially developed to cross the BBB. 相似文献
12.
Federico Paolini Paoletti Simone Simoni Lucilla Parnetti Lorenzo Gaetani 《International journal of molecular sciences》2021,22(9)
Brain small vessel disease (SVD) refers to a variety of structural and functional changes affecting small arteries and micro vessels, and manifesting as white matter changes, microbleeds and lacunar infarcts. Growing evidence indicates that SVD might play a significant role in the neurobiology of central nervous system (CNS) neurodegenerative disorders, namely Alzheimer’s disease (AD) and Parkinson’s disease (PD), and neuroinflammatory diseases, such as multiple sclerosis (MS). These disorders share different pathophysiological pathways and molecular mechanisms (i.e., protein misfolding, derangement of cellular clearance systems, mitochondrial impairment and immune system activation) having neurodegeneration as biological outcome. In these diseases, the actual contribution of SVD to the clinical picture, and its impact on response to pharmacological treatments, is not known yet. Due to the high frequency of SVD in adult-aged patients, it is important to address this issue. In this review, we report preclinical and clinical data on the impact of SVD in AD, PD and MS, with the main aim of clarifying the predictability of SVD on clinical manifestations and treatment response. 相似文献
13.
Roberta J. Ward David T. Dexter Antonio Martin-Bastida Robert R. Crichton 《International journal of molecular sciences》2021,22(7)
Iron loading in some brain regions occurs in Parkinson’s Disease (PD), and it has been considered that its removal by iron chelators could be an appropriate therapeutic approach. Since neuroinflammation with microgliosis is also a common feature of PD, it is possible that iron is sequestered within cells as a result of the “anaemia of chronic disease” and remains unavailable to the chelator. In this review, the extent of neuroinflammation in PD is discussed together with the role played by glia cells, specifically microglia and astrocytes, in controlling iron metabolism during inflammation, together with the results of MRI studies. The current use of chelators in clinical medicine is presented together with a discussion of two clinical trials of PD patients where an iron chelator was administered and showed encouraging results. It is proposed that the use of anti-inflammatory drugs combined with an iron chelator might be a better approach to increase chelator efficacy. 相似文献
14.
Filippo Sean Giorgi Francesca Biagioni Alessandro Galgani Nicola Pavese Gloria Lazzeri Francesco Fornai 《International journal of molecular sciences》2020,21(22)
Locus Coeruleus (LC) is the main noradrenergic nucleus of the central nervous system, and its neurons widely innervate the whole brain. LC is severely degenerated both in Alzheimer’s disease (AD) and in Parkinson’s disease (PD), years before the onset of clinical symptoms, through mechanisms that differ among the two disorders. Several experimental studies have shown that noradrenaline modulates neuroinflammation, mainly by acting on microglia/astrocytes function. In the present review, after a brief introduction on the anatomy and physiology of LC, we provide an overview of experimental data supporting a pathogenetic role of LC degeneration in AD and PD. Then, we describe in detail experimental data, obtained in vitro and in vivo in animal models, which support a potential role of neuroinflammation in such a link, and the specific molecules (i.e., released cytokines, glial receptors, including pattern recognition receptors and others) whose expression is altered by LC degeneration and might play a key role in AD/PD pathogenesis. New imaging and biochemical tools have recently been developed in humans to estimate in vivo the integrity of LC, the degree of neuroinflammation, and pathology AD/PD biomarkers; it is auspicable that these will allow in the near future to test the existence of a link between LC-neuroinflammation and neurodegeneration directly in patients. 相似文献
15.
Eleonora Ficiar Ilaria Stura Caterina Guiot 《International journal of molecular sciences》2022,23(17)
The alteration of iron homeostasis related to the aging process is responsible for increased iron levels, potentially leading to oxidative cellular damage. Iron is modulated in the Central Nervous System in a very sensitive manner and an abnormal accumulation of iron in the brain has been proposed as a biomarker of neurodegeneration. However, contrasting results have been presented regarding brain iron accumulation and the potential link with other factors during aging and neurodegeneration. Such uncertainties partly depend on the fact that different techniques can be used to estimate the distribution of iron in the brain, e.g., indirect (e.g., MRI) or direct (post-mortem estimation) approaches. Furthermore, recent evidence suggests that the propensity of brain cells to accumulate excessive iron as a function of aging largely depends on their anatomical location. This review aims to collect the available data on the association between iron concentration in the brain and aging, shedding light on potential mechanisms that may be helpful in the detection of physiological neurodegeneration processes and neurodegenerative diseases such as Alzheimer’s disease. 相似文献
16.
Olaia Martínez-Iglesias Vinogran Naidoo Natalia Cacabelos Ramn Cacabelos 《International journal of molecular sciences》2022,23(1)
Epigenetics is the study of heritable changes in gene expression that occur without alterations to the DNA sequence, linking the genome to its surroundings. The accumulation of epigenetic alterations over the lifespan may contribute to neurodegeneration. The aim of the present study was to identify epigenetic biomarkers for improving diagnostic efficacy in patients with neurodegenerative diseases. We analyzed global DNA methylation, chromatin remodeling/histone modifications, sirtuin (SIRT) expression and activity, and the expression of several important neurodegeneration-related genes. DNA methylation, SIRT expression and activity and neuregulin 1 (NRG1), microtubule-associated protein tau (MAPT) and brain-derived neurotrophic factor (BDNF) expression were reduced in buffy coat samples from patients with neurodegenerative disorders. Our data suggest that these epigenetic biomarkers may be useful in clinical practical for the diagnosis, surveillance, and prognosis of disease activity in patients with neurodegenerative diseases. 相似文献
17.
Ana Salom Correia Armando Cardoso Nuno Vale 《International journal of molecular sciences》2021,22(16)
There is recognition that both stress and immune responses are important factors in a variety of neurological disorders. Moreover, there is an important role of several neurotransmitters that connect these factors to several neurological diseases, with a special focus in this paper on serotonin. Accordingly, it is known that imbalances in stressors can promote a variety of neuropsychiatric or neurodegenerative pathologies. Here, we discuss some facts that link major depressive disorder, Alzheimer’s, and Parkinson’s to the stress and immune responses, as well as the connection between these responses and serotonergic signaling. These are important topics of investigation which may lead to new or better treatments, improving the life quality of patients that suffer from these conditions. 相似文献
18.
Balapal S. Basavarajappa Shivakumar Subbanna 《International journal of molecular sciences》2021,22(9)
Advances achieved with molecular biology and genomics technologies have permitted investigators to discover epigenetic mechanisms, such as DNA methylation and histone posttranslational modifications, which are critical for gene expression in almost all tissues and in brain health and disease. These advances have influenced much interest in understanding the dysregulation of epigenetic mechanisms in neurodegenerative disorders. Although these disorders diverge in their fundamental causes and pathophysiology, several involve the dysregulation of histone methylation-mediated gene expression. Interestingly, epigenetic remodeling via histone methylation in specific brain regions has been suggested to play a critical function in the neurobiology of psychiatric disorders, including that related to neurodegenerative diseases. Prominently, epigenetic dysregulation currently brings considerable interest as an essential player in neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Amyotrophic lateral sclerosis (ALS) and drugs of abuse, including alcohol abuse disorder, where it may facilitate connections between genetic and environmental risk factors or directly influence disease-specific pathological factors. We have discussed the current state of histone methylation, therapeutic strategies, and future perspectives for these disorders. While not somatically heritable, the enzymes responsible for histone methylation regulation, such as histone methyltransferases and demethylases in neurons, are dynamic and reversible. They have become promising potential therapeutic targets to treat or prevent several neurodegenerative disorders. These findings, along with clinical data, may provide links between molecular-level changes and behavioral differences and provide novel avenues through which the epigenome may be targeted early on in people at risk for neurodegenerative disorders. 相似文献
19.
Richard N. L. Lamptey Bivek Chaulagain Riddhi Trivedi Avinash Gothwal Buddhadev Layek Jagdish Singh 《International journal of molecular sciences》2022,23(3)
Neurodegenerative disorders are primarily characterized by neuron loss. The most common neurodegenerative disorders include Alzheimer’s and Parkinson’s disease. Although there are several medicines currently approved for managing neurodegenerative disorders, a large majority of them only help with associated symptoms. This lack of pathogenesis-targeting therapies is primarily due to the restrictive effects of the blood–brain barrier (BBB), which keeps close to 99% of all “foreign substances” out of the brain. Since their discovery, nanoparticles have been successfully used for targeted delivery into many organs, including the brain. This review briefly describes the pathophysiology of Alzheimer’s, Parkinson’s disease, and amyotrophic lateral sclerosis, and their current management approaches. We then highlight the major challenges of brain-drug delivery, followed by the role of nanotherapeutics for the diagnosis and treatment of various neurological disorders. 相似文献
20.
Mootaz M. Salman Zaid Al-Obaidi Philip Kitchen Andrea Loreto Roslyn M. Bill Richard Wade-Martins 《International journal of molecular sciences》2021,22(9)
Neurodegenerative diseases (NDs) including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and Huntington’s disease are incurable and affect millions of people worldwide. The development of treatments for this unmet clinical need is a major global research challenge. Computer-aided drug design (CADD) methods minimize the huge number of ligands that could be screened in biological assays, reducing the cost, time, and effort required to develop new drugs. In this review, we provide an introduction to CADD and examine the progress in applying CADD and other molecular docking studies to NDs. We provide an updated overview of potential therapeutic targets for various NDs and discuss some of the advantages and disadvantages of these tools. 相似文献