首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sphingolipid sulfatide is a component of myelin and some non-neuronal cells. Antibodies to sulfatide occur in some patients with autoimmune neuropathies and in patients with insulin-dependent diabetes mellitus (IDDM) caused by immunologic destruction of insulin-secreting pancreatic islet beta-cells. Distinct sulfatide molecular species may differ in immunogenicity, and facile means to identify sulfatide species in islets and other tissues obtainable in only small amounts could be useful. Electrospray ionization mass spectrometry (ESI/MS) permits structural determination of small quantities of phospholipids and is applied here to sulfatide analysis. We find that sulfatide standards are readily analyzed by negative ion ESI/MS, and tandem mass spectra of individual species exhibit some ions common to all species and other ions that reflect distinct fatty acid substituents in different sulfatide molecules. A signature ion cluster resulting from cleavage directed by the alpha-hydroxy group of sulfatide species with a hydroxylated fatty acid substituent identifies such species. Sulfatide profiles in tissue lipid extracts can be obtained by ESI/MS/MS scanning for common sulfatide ions and for ions reflecting fatty acid substituents. Islets are demonstrated to contain sulfatide and to exhibit a profile of species different from that of brain.  相似文献   

2.
Electrospray ionization (ESI) and tandem mass spectrometry (MS/MS) were used to analyze epoxyeicosatrienoic acids (EETs) and monohydroxyeicosatetraenoic acids (HETEs) isolated from human red blood cell membranes following base hydrolysis. ESI results in the formation of an abundant isobaric carboxylate anion at m/z 319 for both of these oxidized metabolites of arachidonic acid. The product ion spectra from the collision-induced dissociation of this carboxylate anion could be used to identify each of the isomeric eicosanoids from the unique fragment ions of each eicosanoid. The observed product ion spectra were identical with those previously obtained by fast atom bombardment ionization; however, ESI required less EET and HETE for analysis. Both EET and HETE phospholipids were present in human red blood cells (RBCs) and their abundance could be substantially increased by treatment under conditions that would induce free radical oxidation of membrane phospholipids. Following incubation of human RBCs with tert-butyl hydroperoxide (tBuOOH), phospholipids were extracted and purified by normal-phase high-performance liquid chromatography (HPLC) as to glycerophospholipid class containing ethanolamine (GPE), serine (GPS) and choline (GPC) as the polar head group. Each class of phospholipid was hydrolyzed to yield the free carboxylic acid prior to on-line HPLC/ESI-MS/MS analysis. The formation of oxidized arachidonic acid esterified to phospholipids in treated RBCs was found to increase significantly for both esterified EETs in GPE, GPS and GPC which increased 49-, 34- and 59-fold, respectively, and also for esterified HETEs in GPE, GPS and GPC which increased 3-, 4- and 11-fold, respectively, compared with untreated RBCs. These results provide the first characterization of EETs formed non-enzymatically as intact phospholipids in a lipid peroxidation model system.  相似文献   

3.
A negative ion electrospray ionization tandem mass spectrometric technique was developed for the analysis of glycerophospholipids. Examination of the product ion mass spectrum of the deprotonated molecular ion provided sufficient information to identify both the class of glycerophospholipid and the molecular weights of the two fatty acid moieties. This technique was applied to the profiling of glycerophospholipids present in the chloroform/methanol extracts of four different bacterial species. The principal bacterial phospholipids detected by this technique were phosphatidylglycerols and diphosphatidylglycerols, accompanied by small amounts of phosphatidylethanolamines for two of the bacterial species examined. The fatty acid composition of the phosphatidylglycerols for each bacteria was determined by tandem mass spectrometry and presented graphically. Differences in the fatty acid composition for each bacterial species were readily apparent from a visual examination of the data sets.  相似文献   

4.
The charge state of ions produced in electrospray ionization (ESI) was reduced in a controlled manner to yield predominantly singly charged species by exposure of the aerosol to a bipolar ionizing gas. Analysis of the resulting ions on an orthogonal time-of-flight mass spectrometer yielded mass spectra greatly simplified compared with conventional ESI spectra. The decreased spectral complexity afforded by the charge reduction facilitates the analysis of mixtures by ESI mass spectrometry.  相似文献   

5.
Plasmenyl phospholipids (1-alk-1'-enyl-2-acyl-3-glycerophospholipids, plasmalogens) are a structurally unique class of lipids that contain an alpha-unsaturated ether substituent at the sn-1 position of the glycerol backbone. Several studies have supported the hypothesis that plasmalogens may be antioxidant molecules that protect cells from oxidative stress. Because the molecular mechanisms responsible for the antioxidant properties of plasmenyl phospholipids are not fully understood, the oxidation of plasmalogens in natural mixtures of phospholipids was studied using electrospray tandem mass spectrometry. Glycerophosphoethanolamine (GPE) lipids from bovine brain were found to contain six major molecular species (16:0p/18:1-, 18:1p/18:1-, 18:0p/20:4-, 16:0p/20:4, 18:0a/20:4-, and 18:0a/22:6-GPE). Oxidation of GPE yielded lyso phospholipid products derived from plasmalogen species containing only monounsaturated sn-2 substituents and diacyl-GPE with oxidized polyunsaturated fatty acyl substituents at sn-2. The only plasmalogen species remaining intact following oxidation contained monounsaturated fatty acyl groups esterified at sn-2. The mechanism responsible for the rapid and specific destruction of plasmalogen GPE may likely involve unique reactivity imparted by a polyunsaturated fatty acyl group esterified at sn-2. This structural feature may play a central role determining the antioxidant properties ascribed to this class of phospholipids.  相似文献   

6.
The reaction of ozone with double bonds present in glycerophosphocholine lipids results in formation of ozonides that can be directly analyzed by mass spectrometry as either positive or negative molecular ion species generated by electrospray ionization. Polyunsaturated fatty acyl groups esterified to the phospholipid yielded a mixture of ozonide species with the maximum number of ozone molecules added equal to the total number of double bonds. Ozonide decomposition resulted in omega-aldehyde and omega-carboxylic acid products as revealed by ESI-MS. Collisional activation of the ozone adducts for mono- and polyunsaturated phospholipids gave rise to fragment ions indicative of the position of the double bonds in these molecules. The major decomposition pathway for either positive or negative ozonide ion species involved charge remote fragmentation of the ozonide initiated by homolytic cleavage of the peroxide bridge followed by rearrangement to form the omega-aldehyde and omega-carboxylate acyl species. The reaction of ozone with phospholipids containing polyunsaturated fatty acyl groups is a useful method to probe the position of double bonds by electrospray ionization mass spectrometry.  相似文献   

7.
Electron impact (EI) tandem mass spectrometry (MS/MS) combined with EPR spin trapping was used to detect and identify the free radical metabolites of various halocarbons in rat liver microsomal dispersions. EPR spectra of the spin adducts of radical metabolites derived from fluorine-containing halocarbons display fluorine hyperfine splitting, which can be used as proof for the identification of this kind of halocarbon-derived free radical spin adduct. For halocarbons without fluorine atoms, MS/MS was found to be a very useful and simple method for the detection and identification of the structures of halocarbon-derived spin adducts from radical metabolites. The molecular ions from spin adducts of these halocarbon-derived free radical intermediates were observed for the first time by scanning the precursor ion spectrum of m/z 57. These assignments were further confirmed by the use of perdeuterated tert-butyl PBN which provides the precursor ion spectrum of m/z 66.  相似文献   

8.
A method to directly identify proteins contained in mixtures by microcolumn reversed-phase liquid chromatography electrospray ionization tandem mass spectrometry (LC/MS/MS) is studied. In this method, the mixture of proteins is digested with a proteolytic enzyme to produce a large collection of peptides. The complex peptide mixture is then separated on-line with a tandem mass spectrometer, acquiring large numbers of tandem mass spectra. The tandem mass spectra are then used to search a protein database to identify the proteins present. Results from standard protein mixtures show that proteins present in simple mixtures can be readily identified with a 30-fold difference in molar quantity, that the identifications are reproducible, and that proteins within the mixture can be identified at low femtomole levels. Based on these studies, methodology has been developed for direct LC/MS/MS analysis of proteins enriched by immunoaffinity precipitation, specific interaction with a protein-protein fusion product, and specific interaction with a macromolecular complex. The approach described in this article provides a rapid method for the direct identification of proteins in mixtures.  相似文献   

9.
The present report illustrates the application of dansyl chloride coupled with ion spray tandem mass spectrometry (IS-MS/MS) in identifying polar urinary metabolites. In the course of the metabolism studies of a drug that is currently in development, the urine from rats and dogs was collected following oral administration of radiolabelled compound. Urinary metabolic profiles of the rat and dog indicated the presence of four major peaks and one major peak, respectively, in the radiochromatogram. Since all attempts to identify the peaks by conventional MS/MS techniques failed, the metabolites were isolated by fraction collection and dansylated. Derivatization of the metabolites resulted in the formation of more hydrophobic, readily ionizable species which were more sensitive in IS-MS/MS analysis than the underivatized metabolites. Examination of the molecular ions and the product ion mass spectra of these derivatives revealed the structures of all the urinary metabolites. The metabolites in the rat and the dog were 4-hydroxyphenylpiperazine glucuronide (M1), 1,4-dihydroxyphenyl glucuronide (M2), 1,4-dihydroxyphenyl sulfate (M3) and phenylpiperazine (M4). Thus, derivatization with dansyl chloride in conjunction with tandem mass spectrometry is a useful tool in identifying polar urinary metabolites.  相似文献   

10.
Analysis of phospholipids was performed using a liquid chromatographic separation with two mass spectrometers in parallel providing electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) data simultaneously from a triple quadrupole instrument and a single quadrupole instrument, respectively. The output from UV-Vis and evaporative light scattering detectors were also acquired by the two mass spectrometers, respectively, for four detectors overall. This arrangement was used to identify and calculate area percents for molecular species of dihydrosphingomyelin (DHS) and sphingomyelin (SPM) in commercially available bovine brain SPM, in human plasma extract and in porcine lens extract. Molecular species of phosphatidylethanolamine and its plasmalogen, and phosphatidylcholine and its plasmalogen were identified and semi-quantitative analysis performed. Commercially available bovine brain SPM was found to contain 11.5% DHS and 88.5% SPM. The only DHS molecular species identified in human plasma was 16:0-DHS, at or below 1% of the sphingolipid content. Porcine lens membranes were found to contain 14.4% DHS and 85.6% SPM. Other findings reported here include: (1) phospholipids were found to undergo dimerization in the electrospray source, giving masses representing combinations of species present. (2) Triacylglycerols gave usable mass spectra under electrospray ionization conditions, as well as under APCI-MS conditions. (3) Triacylglycerols gave ammonium adducts as base peaks in their APCI mass spectra, which reduced fragmentation and increased the proportions of molecular ions. (4) Mass spectra were obtained for phospholipids which underwent both protonation and sodium adduct formation in different chromatographic runs.  相似文献   

11.
Low-energy (LE) and high-energy (HE) collisionally activated decompositions (CAD) of calcium/peptide complexes of the form [M - H + Ca]+ and [M + Ca]2+ reflect the site of calcium binding in various gas-phase peptides that are models of the calcium binding site III of rabbit skeletal troponin C. The Ca2+ binding sites involve an aspartic acid, glutamic acid, and asparagine, which are in the metal-binding loops of calcium-binding proteins. Both fast atom bombardment (FAB) and electrospray ionization (ESI) were used to generate the metal/peptide complexes. When submitted to LE CAD, ESI-produced Ca2+/peptide complexes undergo fragmentations that are controlled by Ca2+ binding and provide information on the Ca2+ binding site. The LE CAD spectra are simple, indicating that Ca2+ binding involves specific oxygen ligands including acidic side chains and that only a few low-energy fragmentation channels exist. The HE CAD spectra of FAB-produced Ca2+/peptide complexes are more complex, owing to the introduction of high internal energy into the precursor ion. Interactions of the other alkaline-earth metal ions Mg2+ and Ba2+ with these peptides reveal that the ligand preferences of these metal ions are slightly different than those of Ca2+.  相似文献   

12.
The collision-induced dissociation of the carboxylate anions from human blood phosphatdilycholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI) and phosphatidic acid (PA) containing the C18:0 (sn-1) and C20:4 (sn-2) fatty acyl residues was studied using normal phase liquid chromatography coupled with negative ion electrospray tandem mass spectrometry. The product ion peak area ratio of C18:0 to C20:4 was calculated for each phospholipid species and was found to increase with increasing collision energy for all classes. For the phospholipids with a net neutral charge (PE, PC) there was a preferential loss of the sn-2 carboxylate anion (C20:4) at low collision energy, while at higher energy there was a preferential loss of the sn-1 carboxylate anion (C18:0). For the phospholipids with a net negative charge (PI, PA, PS) the intensity of the sn-1 carboxylate anion peak was equal to or higher than the sn-2 carboxylate anion peak at the energies measured. At a given collision energy the product ion peak area ratio decreased in the order PA > or = PS > PI. Studying PS and PE species at different collision energies, it was found that for both classes the increase in the abundance ratio with increasing collision energy was largely dependent on the chain length and degree of unsaturation of the sn-2 acyl chain.  相似文献   

13.
In a sphingomyelin-enriched sample of polar lipids from bovine milk, molecular species of intact sphingomyelin were separated by normal-phase high-performance liquid chromatography and detected by mass spectrometry (MS) for structural information. First, by using electrospray with positive ionization (ESI), protonated molecules ([M + H]+) were detected. Second, in atmospheric pressure chemical ionisation (APCI+), in-source fragmentation of sphingomyelin ions led to the formation of ceramide ions. With the ceramide ions as precursors, ions representative of both the long-chain base (LCB) parts and the fatty acid (FA) parts were detected in APCI-MS/MS via collision-induced decomposition (CID). Using this procedure, it was possible to determine the sphingomyelin molecular masses using ESI+ and then their respective LCB-FA combinations(s) using APCI+(-)MS/MS. At least 36 protonated molecules of intact sphingomyelin were detected in the bovine milk sample. The combinations found covered a range of molecular masses from 673 to 815 Da. The 12 most common protonated molecules (constituting approximately 90% of the total ion current in ESI) were composed of at least 25 different LCB-FA combinations. Saturated and unsaturated LCBs and FAs were detected in addition to hydroxy fatty acids. The most common LCBs were 16:1, 17:1, 18:1 and 19:1, whereas the most common FAs were 16:0, 22:0, 23:0 and 24:0. LCB-FA combinations of sphingomyelin from bovine brian, bovine erythrocytes and chicken egg yolk are also presented.  相似文献   

14.
US11 is a small basic protein composed of 161 amino acid residues, and is among the most abundant viral proteins in cells infected with herpes simplex viruses HSV1 and HSV2. The amino acid sequence [91-121] is considered essential for the binding of this protein with RNA. Automated solid phase synthesis of this fragment resulted in a crude reaction mixture containing the desired sequence as well as a number of unknown side products. On-line liquid chromatography/electrospray mass spectrometry (LC/ES-MS) and LC/ES tandem mass spectrometry (MS/MS) allowed the identification of the separated components and furnished relevant sequencing information. The unusual sequences of the monitored components, which consist of a tandemly repeated three-amino-acid motif with the sequence Arg-X-Pro, where X is an acidic or uncharged polar amino acid residue, yielded product ion spectra lacking substantial sequence information and rich in fragment ions manifesting the neutral losses 17, 42 and 60 u.  相似文献   

15.
Natural mixtures of sophorolipids produced by the yeast Candida bombicola have been analyzed by fast atom bombardment (FAB)-MS and collision-induced dissociation (CID)-MS. Some pure components have been analysed by two-dimensional NMR spectroscopy. The presence of acidic, lactonic, and O-acetylated forms and the position of double bonds in the fatty acid part of these glycolipids can be easily inferred from positive and negative ion FAB-mass spectra. Details about position of O-acetylation can be obtained from CID mass spectra of [M+H]+ and [M-H]- ions and from the NMR spectra. Differences in CID fragmentation between protonated and sodiated molecular ions are discussed in detail. Enzymatic hydrolysis of 6',6"-di-O-acetyl sophorolipid lactone by cutinase from Fusarium solani results specifically in the removal of the 6'-O-acetyl group, whereas the 6"-O-acetyl and lactone group are resistant. This specificity is explained from a three-dimensional model of the sophorolipid generated on the basis of the short 1H,1H distances as inferred from the NMR (ROESY) spectra.  相似文献   

16.
Large-scale DNA sequencing is creating a sequence infrastructure of great benefit to protein biochemistry. Concurrent with the application of large-scale DNA sequencing to whole genome analysis, mass spectrometry has attained the capability to rapidly, and with remarkable sensitivity, determine weights and amino acid sequences of peptides. Computer algorithms have been developed to use the two different types of data generated by mass spectrometers to search sequence databases. When a protein is digested with a site-specific protease, the molecular weights of the resulting collection of peptides, the mass map or fingerprint, can be determined using mass spectrometry. The molecular weights of the set of peptides derived from the digestion of a protein can then be used to identify the protein. Several different approaches have been developed. Protein identification using peptide mass mapping is an effective technique when studying organisms with completed genomes. A second method is based on the use of data created by tandem mass spectrometers. Tandem mass spectra contain highly specific information in the fragmentation pattern as well as sequence information. This information has been used to search databases of translated protein sequences as well as nucleotide databases such as expressed sequence tag (EST) sequences. The ability to search nucleotide databases is an advantage when analyzing data obtained from organisms whose genomes are not yet completed, but a large amount of expressed gene sequence is available (e.g., human and mouse). Furthermore, a strength of using tandem mass spectra to search databases is the ability to identify proteins present in fairly complex mixtures.  相似文献   

17.
Oxidation of red blood cell (RBC) ghost preparations initiated by tert-butyl hydroperoxide (tBuOOH) was employed to explore the formation of lipid products derived from endogenous phospholipids that specifically expressed biological activity toward the human polymorphonuclear leukocyte (PMN). Common measure of lipid peroxidation, thiobarbituric acid-reactive substances (TBARS) and the increased absorbance at 235 nm consistent with the formation of conjugated dienes, was observed following a 90-min incubation of RBC ghosts with tBuOOH. Saponification of phospholipids and separation of the resultant fatty acids by RP-HPLC permitted direct mass spectrometric analysis of oxidized fatty acids. Individual HPLC fractions were assayed for their ability to increase intracellular free calcium ion concentrations in human PMN to guide structural investigations. Two fractions were found to contain biologically active components, and tandem mass spectrometric analysis of the abundant ions observed in these fractions resulted in the characterization of several oxidized polyunsaturated fatty acids derived from arachidonic and linoleic acids. The major components in these fractions included 5-hydroxyeicosatetraenoic acid (5-HETE) and 5-hydroperoxyeicosatetraenoic acid (5-HpETE). The dose-dependent increases in intracellular calcium in the neutrophil using synthetic 5(rac)-HETE, 5(rac)-HpETE, and 5-oxo-ETE were found to have EC50's of 250, 6, and 3 nM, respectively. The quantity of 5-oxygenated arachidonate components present in oxidized RBC was consistent with the observed biological response elicited by fractions A and B. This study suggests that 5-HETE and 5-HpETE are abundant products of lipid peroxidation of cellular membranes and that these racemic products possess significant biological activity. Such compounds could play important roles as mediators of the cellular response to toxicologic stimuli that generate free radical species.  相似文献   

18.
The chemical structure of nontoxic diphosphoryl lipid A from Rhodobacter sphaeroides was confirmed using a combination of LSIMS (on a two-sector mass spectrometer) and MALDI (on time-of-flight and ion trap mass spectrometers) in conjunction with tandem mass spectrometry in both positive and negative ion modes. Accurate molecular weight measurement accompanied by the analysis of fragment ion masses yielded the composition of fatty acyl groups. Tandem experiments (collisionally induced dissociation of both quasimolecular and oxonium ions) were also performed, revealing the precise location and nature of the fatty acyl groups on the disaccharide backbone.  相似文献   

19.
The electron impact ionization of C-4-alkylated cholest-5-en-3beta-hydroxysterols has been investigated. The mass spectra of the C-4-alkylated cholesterols contain a number of ions in the high mass region for which analogous ions are not found in the spectrum of cholesterol. Detailed studies of the composition and origin of these ions have been made by high resolution mass spectrometry and analysis of metastable ions. In addition, a large number of isotopically (deuterium and 18O) substituted C-4-alkylated analogues have been prepared to assist in the interpretation of the spectra. The combined results indicate the occurrence of a number of very complex and unusual electron ionization induced fragmentations. Most notable of the findings reported herein concerns the demonstration of the formation of an ion involving loss of the elements of ring A with an intramolecular shift of the oxygen and hydrogen atoms of the hydroxyl function to the charge-retaining species.  相似文献   

20.
Electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry has been used to characterize heterotetrameric corynebacterial sarcosine oxidase. By using a conventional quadrupole mass spectrometer, no spectra for the intact complex could be obtained (i.e., electrospraying protein at neutral pH), but spectra showing the four protein subunits were obtained when electrospraying from acidic solution. Initial low resolution ESI-FTICR mass spectra of the intact heterotetramer revealed a typical narrow charge state distribution in the range 6000 < m/z < 9000, consistent with retention of a compact structure in the gas phase, and gave a mass measurement about 1000 u higher than predicted. Efficient in-trap clean up, based upon low energy collisionally induced dissociation of adducts, allowed significant improvement in mass measurement accuracy. The present results represent the largest heteromultimeric protein complex successfully analyzed using FTICR mass spectrometry, and clearly illustrate the importance of sample clean up methods for large molecule characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号