首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
在分析一定量随站测试样品的基础上,构建了具有较高精度的反应堆压力容器(RPV)材料韧脆转变温度(DBTT)预测的人工神经网络模型,并利用模型研究了中子注量和中子注量率对RPV材料DBTT的影响。结果表明,材料DBTT随着中子注量增加出现先线性上升,然后平缓上升,最后饱和的趋势,而中子注量率对RPV材料辐照脆化的影响不明显。   相似文献   

2.
Based on the analysis of a certain amount of on-site test samples, this paper constructs a high-precision artificial neural network model for the ductile-brittle transition temperature prediction of RPV materials. Then we use the model to explore the influence of neutron fluence and neutron fluence rate parameters on the ductile-brittle transition temperature of RPV materials. It is found that the ductile-brittle transition temperature increases linearly with the increasing of neutron fluence, and then rises slowly and finally saturates. The effect of neutron flux rate on the embrittlement of RPV materials is not obvious.  相似文献   

3.
TEM and PAS study of neutron irradiated VVER-type RPV steels   总被引:2,自引:0,他引:2  
Conventional transmission electron microscopy and positron lifetime and Doppler broadening positron annihilation spectroscopy techniques have been used to investigate the radiation-induced microstructural changes in surveillance specimens of VVER-type reactor pressure vessel (RPV) steels, and RPV steels irradiated in the research reactor. Defects visible in transmission electron microscopy consist of black dots, dislocation loops and precipitates concentrated along the dislocation substructure. Their size and density depend on the neutron flux and fluence. The parallel set of thermally aged specimens, specimens recovery annealed after irradiation and specimens irradiated in a lower neutron flux was investigated too. No defects discernible in transmission electron microscopy were found after accelerated irradiation in the research reactor. In addition to visible defects, the small-volume vacancy clusters were identified by positron annihilation spectroscopy.  相似文献   

4.
A methodology is presented for the accurate assessment of the fast neutron fluence at the reactor pressure vessel (RPV) of a pressurised water reactor (PWR). The basis is the transfer of results from deterministic CASMO-4/SIMULATE-3 core-follow calculations (power distribution, fuel compositions) into a 3D volumetric (pin-by-pin, axially distributed) fixed neutron source, for ex-core neutron transport simulations using the Monte Carlo code MCNPX. The modelling is supported by sensitivity and optimisation studies, using precise MCNPX calculations and detailed reactor condition specifications.  相似文献   

5.
Although great progress has been made in understanding the irradiation behaviour of reactor pressure vessel (RPV) steels, many aspects are still not fully understood. A large amount of data has been generated for understanding the effects of different irradiation conditions on material properties. The data needed for the long term operation of RPVs is almost always created by accelerated irradiations in test reactors, and due to insufficient knowledge on the damage interaction between the material and the high energy neutrons the potential bias of the conclusions on material properties in non-accelerated irradiation conditions can not be excluded. Important parameters for the extrapolation of results from accelerated irradiations to typical power irradiation conditions are the irradiation temperature, the neutron flux and the neutron spectrum. In particular, the effect of neutron flux on embrittlement behaviour is considered a complex phenomenon, and it seems to be dependent on the alloy composition, the neutron fluence range and the irradiation temperature. This paper will present the current knowledge on temperature, flux and spectrum effects, based on a recent literature survey and other relevant publications on the subject. It will explore the implications these effects may have for the safety evaluation of aged RPVs, especially for those exposed to long irradiation periods.  相似文献   

6.
A comprehensive review of positron annihilation studies of Cr---Mo---V reactor pressure vessel (RPV) steels (Soviet type 15Kh2MFA) in unirradiated and neutron irradiated states is presented. The influences of lattice defects, impurity atom distribution, irradiation temperature, flux and fluence of fast neutrons on positron annihilation parameters, especially during isochronal annealing, are discussed in terms of the positron trapping model. In contrast to the literature, where irradiation-enhanced Cu precipitates and solute coated microvoids are thought to be major defect types responsible for strengthening and hence embrittling of RPV steels, we suggest irradiation-induced precipitates, i.e. probably carbides, to play this role. Possibilities to probe this model are suggested.  相似文献   

7.
The radiation damage produced in reactor pressure vessel (RPV) steels during neutron irradiation is a long-standing problem of considerable practical interest. In this study, an extended X-ray absorption fine structure (EXAFS) spectroscopy has been applied at Cu, Ni and Mn K-edges to systematically investigate neutron induced radiation damage to the metal-site bcc structure of RPV steels, irradiated with neutrons in the fluence range from 0.85 to 5.0 × 1019 cm−2. An overall similarity of Cu, Ni and Mn atomic environment in the iron matrix is observed. The radial distribution functions (RDFs), derived from EXAFS data have been found to evolve continuously as a function of neutron fluence describing the atomic-scale structural modifications in RPVs by neutron irradiations. From the pristine data, long range order beyond the first- and second-shell is apparent in the RDF spectra. In the irradiated specimens, all near-neighbour peaks are greatly reduced in magnitude, typical of damaged material. Prolonged annealing leads annihilation of point defects to give rise to an increase in the coordination numbers of near-neighbour atomic shells approaching values close to that of non-irradiated material, but does not suppress the formation of nano-sized Cu and/or Ni-rich-precipitates. Total amount of radiation damage under a given irradiation condition has been determined. The average structural parameters estimated from the EXAFS data are presented and discussed.  相似文献   

8.
Neutron fluence spectrum calculations have been performed for the reactor pressure vessel of a VVER-1000, applying the Monte Carlo code TRAMO. Activities measured earlier in Balakovo-1 by fluence monitors, placed in special Charpy surveillance containers, are compared to TRAMO results. The average deviation from the measurements is about 5%. A good agreement of the fluence spectra near the RPV inner side, at the height of the core beltline, to the spectra at the Charpy probe positions on top of the radial reflector has been demonstrated.  相似文献   

9.
严重事故下为实现堆内熔融物滞留,可采用堆内捕集器(IVCC)的策略。捕集器属压力容器的一部分,属不可更换设备,需长期在堆内受中子辐照。本文通过对典型压水堆压力容器模型和带IVCC的压力容器模型的比较,发现IVCC不会改变压力容器内快中子通量,不会对压力容器的辐照造成影响。且IVCC使得压力容器的热中子通量明显减小,降低了压力容器的整体辐照水平。这说明IVCC对压力容器的辐照性能不会产生不利影响,反而有助于防止压力容器的老化。  相似文献   

10.
The reactor pressure vessel (RPV) of the HTTR is 5.5 m (inside diameter), 13.2 m (inside height), and 122 mm (shell thickness). The RPV contains core components, reactor internals, reactivity control system, etc.2 1/4Cr–1Mo steel is chosen as the material for RPV. The temperature reaches about 400 °C at normal operation. The fluence of the RPV is estimated to be less than 1 × 1017 n/cm2 (E > 1 MeV) and so irradiation embrittlement is negligible, but temper embrittlement is not negligible. For the purpose of reducing embrittlement, content of some elements must be limited in the 2 1/4Cr–1Mo steel for the RPV; embrittlement parameters, J-factor and are used.In this paper, design and structure of the RPV are reviewed first. Fabrication procedure of the RPV and its special feature are described. Material data on the 2 1/4Cr–1Mo steel manufactured for the RPV, especially the embrittlement parameters, J-factor and , and nil-ductility transition temperatures, TNDT, by drop weight tests, are shown. In-service inspection and results of R&Ds are also described.  相似文献   

11.
The dependence of the mechanical properties on the depth position in the unirradiated state and after irradiation up to neutron fluences of approximately 5 × 1018 and 70 × 1018 cm−2 (E > 0.5 MeV) is tested on a forging made out of VVER 440 reactor pressure vessel (RPV) steel 15CrMoV. The near-surface position shows a higher strength and a lower transition temperature than the positions greater than 1/4 wall thickness. Irradiation does not change these differences in a significant manner. The testing of specimens from the 1/4 depth position within the surveillance programme, as normally laid down in the legal rules relating to nuclear power plants, results in a conservative safety assessment against brittle failure up to the EOL fluence. On taking into account fluence attenuation, the flux effect, etc., the toughness gradually increases from the inside to the outside of the wall after longer RPV operating times.  相似文献   

12.
The evaluation and prognosis of reactor pressure vessel (RPV) material embrittlement in WWERs and the allowable period of their safe operation are performed on the basis of impact test results of irradiated surveillance specimens. The main problem concerns the irradiation conditions (irradiation temperature, neutron flux and neutron spectrum) of the surveillance specimens that have not been determined yet with the necessary accuracy. These conditions could differ from the actual RPV wall condition. In particular, the key issue is the possible difference between the irradiation temperature of the surveillance specimens and the actual RPV wall temperature. It is recognized that the direct measurement of the irradiation temperature by thermocouples during reactor operation is the only way to obtain reliable information. In addition, the neutron field's parameters in the surveillance specimens location have not been determined yet with the necessary accuracy. The use of state of the art dosimeters can provide high accuracy in the determination of the neutron exposure level.The COBRA project, which started in August 2000 and had a duration of 3 years, was designed to solve the above-mentioned problems. Surveillance capsules were manufactured which contained state of art dosimeters and temperature monitors (melting alloys). In addition, thermocouples were installed throughout the instrumentation channels of the vessel head to measure directly the irradiation temperature in the surveillance position during reactor operation. The selected reactor for the experiment was the Unit 3 of Kola NPP situated in the arctic area of Russia. Irradiation of capsules and online temperature measurements were performed during one fuel cycle. On the base of statistical processing of thermocouples readings, the temperature of irradiated surveillance specimens in WWER-440/213 reactor can be accepted as 269.5 ± 4 °C. Uncertainties were evaluated also with experimental work carried out in the WWRSZ research reactor and by finite element modelling of surveillance capsules. The results obtained show that there is not need to perform temperature correction when surveillance data of irradiated specimens are used for embrittlement assessment of WWER-440(213) reactor pressure vessels. Maximum neutron flux evaluated using detectors, which were placed in the Charpy specimen simulators, equals 2.7 × 1012 cm−2 s−1 with E > 0.5 MeV. It is established that depending on the orientation of the capsules with respect to the core, the detectors of the standard surveillance capsules can give both overestimated and underestimated neutron flux values, as compared to the actual flux received by the surveillance specimens. The overestimation or underestimation can reach 10%.  相似文献   

13.
In this paper, we use an artificial neural network approach to obtain predictions of neutron irradiation induced hardening, more precisely of the change in the yield stress, for reactor pressure vessel steels of pressurized water nuclear reactors. Different training algorithms are proposed and compared, with the goal of identifying the best procedure to follow depending on the needs of the user. The numerical importance of some input variables is also studied. Very accurate numerical regressions are obtained, by taking only four input variables into account: neutron fluence, irradiation temperature, and chemical composition (Cu and Ni content). Accurate extrapolations in term of neutron fluence are obtained.  相似文献   

14.
The effect of neutron irradiation and post-irradiation thermal annealing on tensile and impact properties of Cr–Ni–Mo steel used for WWER-1000 reactor pressure vessel (RPV) manufacturing was studied. A gap in yield stress and ultimate tensile stress fluence dependence at the fluence range of 0–3×1023 neutrons m−2 was observed while ductile-to-brittle transition temperature (DBTT) was continuously increasing with damage dose. The post-irradiation annealing recovery of tensile properties was found to be higher than the one of impact properties. Over-recovery of tensile properties due to 460 and 490°C post-irradiation annealings were observed. The annealing effectiveness of WWER-440 and WWER-1000 grades was compared. Nickel was supposed to affect both the radiation sensitivity and the post-irradiation residual DBTT shift of WWER-1000 type steel.  相似文献   

15.
The water gap between the wall and the core of the RPV (Reactor Pressure Vessel) in a VVER-440 plant is small compared with typical Western type LWR5. The neutron fluence on the RPV wall is, consequently, much higher in a VVER-440 plant. In older VVER-440 plants the material of the RPV, especially the horizontal core weld, contains so much impurities (P- and Cu-content) that the irradiation embrittlement has become a problem. On bases of fracture mechanics analyses in Loviisa, IVO has been forced to make several measures to ensure safe operation of the plants. According to IVO's current understanding, both plants may be in operation for the design life without annealing of the RPVs.  相似文献   

16.
给出了一种基于~(103)Rh(n,n′)~(103)Rh~m反应监测快中子注量的方法。根据干扰核素半衰期不同的特点,选取合适的冷却和测量时间,降低了~(103)Rh(n,n′)~(103)Rh~m活化率测量中干扰核素的影响。根据152Eu标定实验结果,利用遗传算法优化探测器尺寸,建立探测器蒙特卡罗算法模型。利用模型校正~(99)Mo-~(99)Tcm放射源实验效率,解决了探测器效率标定和射线自吸收问题。开展了快中子注量监测,实验结果与铁、硫、镍等快中子监测箔一致性较好,测量不确定度约为13.1%。  相似文献   

17.
The Monte Carlo code MCNP was used to calculate absolute values of thermal, epithermal and fast neutron fluence rates in the new RPI core using fresh LEU fuel. Discrepancies smaller than 20% were obtained between calculated results and activation foil measurements. A previous knowledge of general characteristics of the neutron energy spectra, provided by the MCNP reactor model itself, has been fundamental to determine the conditions yielding a proper comparison of simulated and measured results. An excellent agreement (6%) was also obtained for the relative neutron fluence rate profiles along the fuel height. The MCNP model of the reactor core was therefore validated for a tri-dimensional determination of neutron fluence rates in the fuel assemblies and neighbouring irradiation positions.  相似文献   

18.
热分析仪器和测量技术的迅速发展为通过测量受辐照材料热性质的变化测量中子注量提供了可能。本文提出采用调制差示扫描量热(MDSC)法测量反应堆辐照的含硼材料可逆比热容的变化,进而得到反应堆的中子注量率。从理论和实验两方面讨论了利用该方法测量反应堆中子注量率的可行性。介绍了可逆比热容法测量反应堆中子注量率的原理和实验方法。展望了这种测量方法在测量高注量反应堆中子注量率的应用前景。  相似文献   

19.
反应堆压力容器(RPV)是保障核电站运行安全性、经济性的核心构件。对RPV的完整性评估而言辐照脆化是必须面对的问题。我国已开发了第三代设计寿命为60 a的核电站。当达到寿期末时,辐照脆化的行为是未知的,这给国产RPV的辐照脆化预测带来了困难。为研究高注量下的辐照脆化行为,对A508-3钢的材料力学性能试样进行辐照考验,辐照温度为(288±8) ℃,中子注量水平达到反应堆压力容器60 a寿期末的辐照水平1×1020 cm-2;开展拉伸、冲击和断裂韧性试验,分析辐照脆化行为,在EONY模型基础上,提出针对国产RPV钢的改进的辐照脆化模型。模型的有效性被试验数据证实,其可准确预测国内A508-3材料的辐照脆化趋势。  相似文献   

20.
The Japan Atomic Energy Research Institute (JAERI) has carried out a series of research and development work related to the high temperature gas-cooled reactor (HTGR) and, accordingly the high temperature engineering test reactor (HTTR) will be constructed in the near future. As the reactor pressure vessel (RPV) material, Mo steel will be used. Material characterization tests have been carried out to evaluate the applicability of the Mo steel for the RPV and to prepare for the licensing. The present paper summarizes the fracture toughness behavior including KId and KIa, irradiation embrittlement susceptibility and degradation of steel due to the long term aging at high temperature of the forged low Mo steel. These tests reveal good fracture toughness which well meets the requirements of the ASME Code, low neutron irradiation embrittlement susceptibility, little embrittlement by long term aging and so on. The present test results demonstrate good applicability of forged low Mo steel to the RPV of HTGR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号