共查询到19条相似文献,搜索用时 46 毫秒
1.
制取低成本、高蛋白含量的大豆浓缩蛋白时,乙醇会产生变性作用,从而降低大豆浓缩蛋白的功能特性,因此本研究采用微波技术对醇法大豆浓缩蛋白进行物理改性。通过对固液比、微波功率、改性时间的单因素实验,针对乳化性进行研究,然后进行正交实验方差分析,最终得出微波技术提高醇法大豆浓缩蛋白乳化性最佳工艺条件:固液比1:9、功率500W、时间3min,可提高乳化能力129.9%,乳化稳定性28.0%。 相似文献
2.
制取低成本、高蛋白含量的大豆浓缩蛋白时,乙醇会产生变性作用,从而降低大豆浓缩蛋白的功能特性,因此本研究采用微波技术对醇法大豆浓缩蛋白进行物理改性。通过对固液比、微波功率、改性时间的单因素实验,针对乳化性进行研究,然后进行正交实验方差分析,最终得出微波技术提高醇法大豆浓缩蛋白乳化性最佳工艺条件:固液比1:9、功率500W、时间3min,可提高乳化能力129.9%,乳化稳定性28.0%。 相似文献
3.
超声波对醇法大豆浓缩蛋白乳化性的影响 总被引:11,自引:2,他引:11
为改善醇法大豆浓缩蛋白的功能特性,采用超声波技术对醇法大豆浓缩蛋白进行物理改性.通过单因素试验,针对乳化性进行研究,得出最佳影响范围,然后进行正交试验方差分析,最终得出超声波技术提高醇法大豆浓缩蛋白乳化性最佳工艺条件:固液比为1∶9、功率密度为0.6 W/cm^2、时间为5min,可提高乳化活力171.4%,乳化稳定性13.0%.利用电子显微镜扫描仪观察改性前后大豆蛋白,证明超声波技术可以有效地改善醇法大豆浓缩蛋白的乳化性. 相似文献
4.
5.
6.
7.
8.
9.
醇法大豆浓缩蛋白酶法改性研究 总被引:9,自引:0,他引:9
为提高醇法大豆浓缩蛋白的溶解性,采用Alcalase蛋白酶对醇法大豆浓缩蛋白进行酶法改性试验。试验表明,酶法水解能显著提高大豆浓缩蛋白的溶解性。酶解的最佳条件是pH8.5、温度62℃、底物浓度5%,酶浓度2%(E/S),在此条件下酶解4h,大豆浓缩蛋白的水解度在12%以上,大豆浓缩蛋白的NSI从10%提高到85%左右,有较好的溶解性。并利用浊度法测定了不同水解度条件下酶解大豆浓缩蛋白的乳化特性,结果表明水解度约为8%时乳化性最大,水解度约为6%时乳化稳定性最好。 相似文献
10.
微波对醇法大豆浓缩蛋白起泡性的影响 总被引:3,自引:1,他引:3
为改善醇法大豆浓缩蛋白的功能特性,采用微波技术对醇法大豆浓缩蛋白进行物理改性。通过单因素试验,针对起泡性进行研究,得出最佳影响范围,然后进行正交试验方差分析,最终得出微波技术提高醇法大豆浓缩蛋白起泡性最佳工艺条件:固液比1∶7、功率500W、时间2min、溶液高度2.0cm,在此条件下醇提大豆浓缩蛋白的起泡能力和起泡稳定性可分别提高83.5%和52.0%。 相似文献
11.
12.
以提高醇法大豆浓缩蛋白的凝胶性为目的,利用葡聚糖对醇法大豆浓缩蛋白进行糖基化改性,在单因素试验的基础上,采用Box-Behnken模型对工艺条件进行了优化,测定并分析了改性产物在各个条件下的凝胶强度。结果表明最适改性条件为:葡聚糖添加量4.9%、反应温度60℃,反应时间44.5 h。此条件下的醇法大豆浓缩蛋白的凝胶强度为286.72 g,是未改性的2.69倍。试验证明该优化工艺能有效的提高醇法大豆浓缩蛋白的凝胶强度。 相似文献
13.
为提高大豆浓缩蛋白(soy protein concentrate,SPC)在等电点处的溶解性,采用木瓜蛋白酶对大豆浓缩蛋白进行酶解,形成可溶性大豆蛋白,然后将其与葡聚糖进行糖基化反应,形成亲水的蛋白质-多糖复合物。结果表明:大豆浓缩蛋白酶解最佳条件为大豆蛋白与水质量配比5:100、酶添加量10000U/g、反应温度55~60℃;糖基化最佳条件为葡聚糖与蛋白配比1:1、反应时间3.5h;大豆浓缩蛋白在等电点附近(pH4)的氮溶指数由原来的9.53%提高到39.12%。本实验制备的等电点可溶大豆蛋白,可增加其在中等酸度食品中的应用。 相似文献
14.
15.
醇法大豆浓缩蛋白最佳浸出工艺条件的研究 总被引:1,自引:3,他引:1
采用先工业己烷、后乙醇二次浸出,一次脱溶的工艺生产醇法大豆浓缩蛋白;实验室研究考察了乙醇浓度、浸出温度、浸出时间、固液比对产品质量的影响。通过正交试验,选择的最佳生产工艺条件为:工业己烷一次浸出为常规生产工艺条件,乙醇水溶液二次浸出工艺条件为:浸出温度45℃、乙醇浓度65%(wt%)、浸出时间60min、固液比1∶3。 相似文献
16.
17.
The functionality of membrane processed soy concentrate was very similar to soy flour in terms of solubility and water hydration capacity. The high emulsifying activity index of soy flour is believed to be reflective of its higher solubility, while surface hydrophobicity is believed to be responsible for an equally high emulsifying activity index in acid precipitated soy isolate. The proteins of soy flour and membrane soy concentrate seem to have most of their hydrophobic residues buried in the interior, while they are exposed in acid precipitated soy isolate. Heating resulted in a decrease in solubility but improved the hydration capacity and emulsifying activity of both soy flour and membrane soy concentrate. The essential amino acid profile of concentrate was comparable to current commercial isolates manufactured by acid precipitation. The majority of the polypeptides present in soy flour were observed to be present in the concentrate. The membrane soy concentrate was determined to have the least soybean aroma when compared to both soy flour and acid precipitated soy isolate. 相似文献
18.