首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
基于反馈控制的迭代学习控制器设计   总被引:2,自引:0,他引:2  
针对具有不确定项或干扰项的重复非线性时变系统,提出了基于反馈控制的迭代学习控制器,其中迭代学习控制器设计为高阶PD型,它以前馈的形式作用于对象,在满足一定的收敛性条件下,证明了该控制器的跟踪误差界是系统初始状态误差界和系统输出干扰项界的线性函数,同时改变反馈增益可以调整系统的最终跟踪误差界,仿真与实验均表明了该方法的有效性。  相似文献   

2.
针对一类在有限时间区间上可重复运行的高阶混合参数化非线性系统,利用改进Backstepping方法,将参数重组技巧和分段积分机制相结合,提出了一种混合自适应迭代学习控制算法。该算法由参数的微分-差分型自适应律和学习控制律组成,可以处理目标轨线迭代可变的跟踪问题。通过构造Lyapunov-like泛函使得跟踪误差的平方在一个有限时间区间上的积分收敛于零,同时保证所有信号均在有限时间区间内有界。仿真结果说明了所提算法的有效性。  相似文献   

3.
非一致目标跟踪的混合自适应迭代学习控制   总被引:1,自引:1,他引:1  
针对一类含有时变和时不变参数的高阶非线性系统,结合Backstepping方法,提出了一种新的自适应迭代学习控制方法,该方法由微分-差分型自适应率和学习控制率组成,保证对非一致目标的跟踪误差平方在一个有限区间上的积分渐近收敛于零,克服了传统的迭代学习控制(ILC)对目标轨线限制,可以跟踪非一致目标轨线.通过构造复合能量函数,给出了闭环系统收敛的一个充分条件,仿真结果说明了该方法的有效性和可行性.  相似文献   

4.
李静  胡云安 《控制与决策》2012,27(7):1015-1020
针对一类时变参数化非线性系统的控制问题进行深入研究,提出一种新的迭代神经网络估计器,并证明了其逼近引理,实现了对时变不确定性的逼近.在用迭代神经网络对时变不确定性进行估计的同时,以Lyapunov稳定性理论为基础,综合运用Backstepping和自适应控制技术,设计了自适应迭代学习控制器,并进行了稳定性分析,得到了稳定性定理,解决了这类时变非线性系统的控制问题.最后的仿真实验验证了所提出设计方法的正确性.  相似文献   

5.
惠宇  池荣虎 《控制理论与应用》2018,35(11):1672-1679
针对一类带扰动有限时间内重复运行的离散时间非线性非仿射不确定系统,本文提出了一种基于迭代扩张状态观测器的数据驱动最优迭代学习控制方法.首先,提出了改进的迭代动态线性化方法,将被控系统线性化为与控制输入有关的仿射形式,并将不确定性合并到一个非线性项中;然后,设计了迭代扩张状态观测器对非线性不确定项进行估计,作为对扰动的补偿;最后,设计了性能指标函数,通过最优技术,提出了参数迭代更新律和最优学习控制律.本文通过数学分析,证明了跟踪误差的有界收敛性.仿真结果验证了方法的有效性.所提出的新型迭代动态线性化方法可很大程度上降低线性化后的控制增益的动态复杂性,使其易于估计.所提出的迭代扩张状态观测器可以在重复中学习,对非重复扰动可进行有效的估计.此外,本文控制器的设计与分析是数据驱动的控制方法,除了被控系统的输入输出数据以外,不需要任何其他模型信息.  相似文献   

6.
曹伟  乔金杰  孙明 《控制与决策》2023,38(4):929-934
为了解决非仿射非线性多智能体系统在给定时间区间上一致性完全跟踪问题,基于迭代学习控制方法设计一种分布式一致性跟踪控制算法.首先,由引入的虚拟领导者与所有跟随者组成多智能体系统的通信拓扑,其中虚拟领导者的作用是提供期望轨迹.然后,在只有部分跟随者能够获得领导者信息的条件下,利用每个跟随者及其邻居的跟踪误差构造每个跟随者的迭代学习一致性跟踪控制器.同时采用中值定理将非仿射非线性多智能体系统转化仿射形式,并基于压缩映射方法证明所提算法的收敛性,给出算法的收敛条件.理论分析表明,在智能体的非线性函数未知情况下,利用所提算法可以使非仿射非线性多智能体系统在给定时间区间上随迭代次数增加逐次实现一致性完全跟踪.最后,通过仿真算例进一步验证所提算法的有效性.  相似文献   

7.
带遗忘因子的高阶闭环迭代学习控制器设计   总被引:1,自引:0,他引:1  
为了解决迭代学习控制对系统存在的不确定性和非重复性干扰的鲁棒性问题,提出了一种带有遗忘因子的高阶闭环迭代学习控制器。该控制器中控制量包括反馈和前馈部分;其中,反馈控制采用简单的HD控制,迭代学习控制器设计为高阶HD型,它以前馈控制的形式作用于对象。通过引入遗忘因子对迭代学习控制器沿迭代方向进行滤波以,削弱系统模型的不确定部分及非重复干扰对系统收敛性的影响。仿真实验证明了该学习控制器的有效性和实用性。  相似文献   

8.
李向阳 《控制与决策》2015,30(3):473-478
针对一类迭代学习控制(ILC)系统的不确定项,根据时域中扩张状态观测器的思想,提出迭代域中线性迭代扩张状态观测器(LIESO),该线性迭代扩张状态观测器可以利用迭代过程的跟踪误差给出迭代学习控制系统的不确定项的显式估计。给出了基于该估计的迭代学习控制算法,并应用类Lyapunov方法证明其收敛性。仿真结果表明,所提出的迭代学习控制算法是有效的,应用迭代扩张状态观测器可以大幅度提高迭代学习效率。  相似文献   

9.
研究了一类仿射非射线时变系统基于状态观测器的输出反馈跟踪问题。首先,设计出该系统的状态观测器,然后,给出了一种用估计状态实现渐近跟踪期望信号的控制器设计方案,并证明了相应闭环系统的指数稳定性,其中系统的控制器和观测器可以分离独立进行设计。最后,给出了数值仿真研究,结果表明了该方法的有效性。  相似文献   

10.
针对一类满足Lipschitz条件的多输入多输出非线性可逆系统执行器故障问题,提出了一种基于迭代学习观测器的逆系统内模故障调节方法。引入PD型迭代学习策略,设计了迭代学习故障诊断观测器,用于对执行器未知时变故障进行快速、准确估计。根据故障估计值,结合逆系统方法对逆模型进行补偿,使得补偿后的逆模型与非线性被控对象串联仍为伪线性系统;再结合内模控制实现了伪线性系统的容错控制。最后,通过仿真算例验证了该方案的有效性。  相似文献   

11.
An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.  相似文献   

12.
通过对轮式移动机器人轨迹跟踪优化问题的研究,提出了一种适应性强、收敛速度快且跟踪误差小的迭代滤波学习控制方法,充分发挥了迭代学习控制和Kalman滤波算法的优势,通过引入状态补偿项和设计新的迭代学习增益矩阵对迭代学习律进行了改进。改进的迭代学习控制能够更快速、更精确、更有效地跟踪期望的圆轨迹。采用离散的Kalman滤波器对干扰和噪声进行滤波,抑制了干扰和噪声对轨迹跟踪的影响,使该控制算法更适合于工程应用。计算机实验和仿真表明该方法具有较好的轨迹跟踪能力。  相似文献   

13.
针对非线性时变系统的迭代学习控制问题提出了一种开闭环PID型迭代学习控制律,并证明了系统满足收敛条件时,具有开闭环PID型迭代学习律的一类非线性时变系统在动态过程存在干扰的情况下控制算法的鲁棒性问题.分析表明,系统在状态干扰、输出干扰和初态干扰有界的情况下跟踪误差有界收敛,在所有干扰渐近重复的情况下可以完全地跟踪给定的期望轨迹.  相似文献   

14.
This paper investigates the distributed finite-time trajectory tracking control for a group of nonholonomic mobile robots with time-varying unknown parameters and external disturbances. At first, the tracking error system is derived for each mobile robot with the aid of a global invertible transformation, which consists of two subsystems, one is a first-order subsystem and another is a second-order subsystem. Then, the two subsystems are studied respectively, and finite-time disturbance observers are proposed for each robot to estimate the external disturbances. Meanwhile, distributed finite-time tracking controllers are developed for each mobile robot such that all states of each robot can reach the desired value in finite time, where the desired reference value is assumed to be the trajectory of a virtual leader whose information is available to only a subset of the followers, and the followers are assumed to have only local interaction. The effectiveness of the theoretical results is finally illustrated by numerical simulations.  相似文献   

15.
In this paper, we present a novel parametric iterative learning control (ILC) algorithm to deal with trajectory tracking problems for a class of nonlinear autonomous agents that are subject to actuator faults. Unlike most of the ILC literature, the desired trajectories in this work can be iteration dependent, and the initial position of the agent in each iteration can be random. Both parametric and nonparametric system unknowns and uncertainties, in particular the control input gain functions that are not fully known, are considered. A new type of universal barrier functions is proposed to guarantee the satisfaction of asymmetric constraint requirements, feasibility of the controller, and prescribed tracking performance. We show that under the proposed algorithm, the distance and angle tracking errors can uniformly converge to an arbitrarily small positive number and zero, respectively, over the iteration domain, beyond a small user‐prescribed initial time interval in each iteration. A numerical simulation is presented in the end to demonstrate the efficacy of the proposed algorithm.  相似文献   

16.
In this article, two adaptive iterative learning control (ILC) algorithms are presented for nonlinear continuous systems with non-parametric uncertainties. Unlike general ILC techniques, the proposed adaptive ILC algorithms allow that both the initial error at each iteration and the reference trajectory are iteration-varying in the ILC process, and can achieve non-repetitive trajectory tracking beyond a small initial time interval. Compared to the neural network or fuzzy system-based adaptive ILC schemes and the classical ILC methods, in which the number of iterative variables is generally larger than or equal to the number of control inputs, the first adaptive ILC algorithm proposed in this paper uses just two iterative variables, while the second even uses a single iterative variable provided that some bound information on system dynamics is known. As a result, the memory space in real-time ILC implementations is greatly reduced.  相似文献   

17.
In this paper trajectory tracking algorithms for gasoline engines are devised. Specifically, precise reference tracking in engine speed and air-to-fuel ratio is enabled while satisfying initial and final conditions on the center of combustion. Such a tracking of multiple reference trajectories requires a coordinated control action for the air path, the fuel path, and the ignition timing actuators. Combining a dedicated feedforward and feedback controller structure and multivariable model-based norm-optimal parallel iterative learning control strategies, feedforward control trajectories are generated that enable a precise tracking of desired reference trajectories. Experimental results focusing on the termination of the catalyst heating mode show the effectiveness of the proposed methodology, resulting in a control error reduction above 85%.  相似文献   

18.
This paper investigates variable-gain PD-type iterative learning control (ILC) for a class of nonlinear time-varying systems to well balance high-gain convergence rate and low-gain noise transmission. Different from the classic PD-type ILC, the control gains of the proposed method are variable. Each variable-gain consists of an amplitude-dependent term and an iteration-varying term. The amplitude-dependent terms vary with the amplitudes of tracking error and derivative of tracking error, and the iteration-varying terms are increasing along the iteration axis. The proposed ILC achieves a faster convergence rate than low-gain ILC and higher tracking accuracy with limited noise amplification than high-gain ILC. Moreover, the convergence condition of the proposed method in the presence of external noise is provided. Simulation and experimental results demonstrate the effectiveness of the proposed method.  相似文献   

19.
分数阶迭代学习控制的收敛性分析   总被引:2,自引:0,他引:2  
本文将传统的迭代学习控制时域和频域分析方法扩展到一类针对分数阶非线性系统的分数阶迭代学习控制时域分析方法.提出了一类新的分数阶迭代学习控制框架并简化了收敛条件,且证明了常增益情况下两类分数阶迭代学习控制收敛条件的等价性问题.该讨论进一步引出了如下两个结果:分数阶不确定系统的分数阶自适应迭代学习控制的可学习区域以及理想带阻型分数阶迭代学习控制的框架.上述结果均得到了仿真验证.  相似文献   

20.
This paper investigates the consensus problem for linear multi-agent systems from the viewpoint of two-dimensional systems when the state information of each agent is not available. Observer-based fully distributed adaptive iterative learning protocol is designed in this paper. A local observer is designed for each agent and it is shown that without using any global information about the communication graph, all agents achieve consensus perfectly for all undirected connected communication graph when the number of iterations tends to infinity. The Lyapunov-like energy function is employed to facilitate the learning protocol design and property analysis. Finally, simulation example is given to illustrate the theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号