首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
基于反馈控制的迭代学习控制器设计   总被引:2,自引:0,他引:2       下载免费PDF全文
针对具有不确定项或干扰项的重复非线性时变系统,提出了基于反馈控制的迭代学习控制器,其中迭代学习控制器设计为高阶PD型,它以前馈的形式作用于对象,在满足一定的收敛性条件下,证明了该控制器的跟踪误差界是系统初始状态误差界和系统输出干扰项界的线性函数,同时改变反馈增益可以调整系统的最终跟踪误差界,仿真与实验均表明了该方法的有效性。  相似文献   

2.
非一致目标跟踪的混合自适应迭代学习控制   总被引:2,自引:1,他引:1       下载免费PDF全文
针对一类含有时变和时不变参数的高阶非线性系统,结合Backstepping方法,提出了一种新的自适应迭代学习控制方法,该方法由微分-差分型自适应率和学习控制率组成,保证对非一致目标的跟踪误差平方在一个有限区间上的积分渐近收敛于零,克服了传统的迭代学习控制(ILC)对目标轨线限制,可以跟踪非一致目标轨线.通过构造复合能量函数,给出了闭环系统收敛的一个充分条件,仿真结果说明了该方法的有效性和可行性.  相似文献   

3.
针对一类在有限时间区间上可重复运行的高阶混合参数化非线性系统,利用改进Backstepping方法,将参数重组技巧和分段积分机制相结合,提出了一种混合自适应迭代学习控制算法。该算法由参数的微分-差分型自适应律和学习控制律组成,可以处理目标轨线迭代可变的跟踪问题。通过构造Lyapunov-like泛函使得跟踪误差的平方在一个有限时间区间上的积分收敛于零,同时保证所有信号均在有限时间区间内有界。仿真结果说明了所提算法的有效性。  相似文献   

4.
李静  胡云安 《控制与决策》2012,27(7):1015-1020
针对一类时变参数化非线性系统的控制问题进行深入研究,提出一种新的迭代神经网络估计器,并证明了其逼近引理,实现了对时变不确定性的逼近.在用迭代神经网络对时变不确定性进行估计的同时,以Lyapunov稳定性理论为基础,综合运用Backstepping和自适应控制技术,设计了自适应迭代学习控制器,并进行了稳定性分析,得到了稳定性定理,解决了这类时变非线性系统的控制问题.最后的仿真实验验证了所提出设计方法的正确性.  相似文献   

5.
惠宇  池荣虎 《控制理论与应用》2018,35(11):1672-1679
针对一类带扰动有限时间内重复运行的离散时间非线性非仿射不确定系统,本文提出了一种基于迭代扩张状态观测器的数据驱动最优迭代学习控制方法.首先,提出了改进的迭代动态线性化方法,将被控系统线性化为与控制输入有关的仿射形式,并将不确定性合并到一个非线性项中;然后,设计了迭代扩张状态观测器对非线性不确定项进行估计,作为对扰动的补偿;最后,设计了性能指标函数,通过最优技术,提出了参数迭代更新律和最优学习控制律.本文通过数学分析,证明了跟踪误差的有界收敛性.仿真结果验证了方法的有效性.所提出的新型迭代动态线性化方法可很大程度上降低线性化后的控制增益的动态复杂性,使其易于估计.所提出的迭代扩张状态观测器可以在重复中学习,对非重复扰动可进行有效的估计.此外,本文控制器的设计与分析是数据驱动的控制方法,除了被控系统的输入输出数据以外,不需要任何其他模型信息.  相似文献   

6.
曹伟  乔金杰  孙明 《控制与决策》2023,38(4):929-934
为了解决非仿射非线性多智能体系统在给定时间区间上一致性完全跟踪问题,基于迭代学习控制方法设计一种分布式一致性跟踪控制算法.首先,由引入的虚拟领导者与所有跟随者组成多智能体系统的通信拓扑,其中虚拟领导者的作用是提供期望轨迹.然后,在只有部分跟随者能够获得领导者信息的条件下,利用每个跟随者及其邻居的跟踪误差构造每个跟随者的迭代学习一致性跟踪控制器.同时采用中值定理将非仿射非线性多智能体系统转化仿射形式,并基于压缩映射方法证明所提算法的收敛性,给出算法的收敛条件.理论分析表明,在智能体的非线性函数未知情况下,利用所提算法可以使非仿射非线性多智能体系统在给定时间区间上随迭代次数增加逐次实现一致性完全跟踪.最后,通过仿真算例进一步验证所提算法的有效性.  相似文献   

7.
带遗忘因子的高阶闭环迭代学习控制器设计   总被引:1,自引:0,他引:1  
为了解决迭代学习控制对系统存在的不确定性和非重复性干扰的鲁棒性问题,提出了一种带有遗忘因子的高阶闭环迭代学习控制器。该控制器中控制量包括反馈和前馈部分;其中,反馈控制采用简单的HD控制,迭代学习控制器设计为高阶HD型,它以前馈控制的形式作用于对象。通过引入遗忘因子对迭代学习控制器沿迭代方向进行滤波以,削弱系统模型的不确定部分及非重复干扰对系统收敛性的影响。仿真实验证明了该学习控制器的有效性和实用性。  相似文献   

8.
李向阳 《控制与决策》2015,30(3):473-478
针对一类迭代学习控制(ILC)系统的不确定项,根据时域中扩张状态观测器的思想,提出迭代域中线性迭代扩张状态观测器(LIESO),该线性迭代扩张状态观测器可以利用迭代过程的跟踪误差给出迭代学习控制系统的不确定项的显式估计。给出了基于该估计的迭代学习控制算法,并应用类Lyapunov方法证明其收敛性。仿真结果表明,所提出的迭代学习控制算法是有效的,应用迭代扩张状态观测器可以大幅度提高迭代学习效率。  相似文献   

9.
针对一类满足Lipschitz条件的多输入多输出非线性可逆系统执行器故障问题,提出了一种基于迭代学习观测器的逆系统内模故障调节方法。引入PD型迭代学习策略,设计了迭代学习故障诊断观测器,用于对执行器未知时变故障进行快速、准确估计。根据故障估计值,结合逆系统方法对逆模型进行补偿,使得补偿后的逆模型与非线性被控对象串联仍为伪线性系统;再结合内模控制实现了伪线性系统的容错控制。最后,通过仿真算例验证了该方案的有效性。  相似文献   

10.
非线性参数化系统自适应迭代学习控制   总被引:2,自引:1,他引:2  
研究一类含有未知时变参数的非线性参数化系统的学习控制问题.利用参数分离技术和信号置换思想,通过置换系统方程,合并所有时变参数为一个未知时变参数,用迭代自适应方法估计该未知参数,设计了一种自适应迭代学习控制方法,使得跟踪误差的平方在一个有限区间上的积分渐近收敛于零.通过构造一个类Lyapunov函数,给出了跟踪误差收敛和所有闭环系统信号有界的一个充分条件.仿真结果验证了该方法的有效性.  相似文献   

11.
    
In this article, two adaptive iterative learning control (ILC) algorithms are presented for nonlinear continuous systems with non-parametric uncertainties. Unlike general ILC techniques, the proposed adaptive ILC algorithms allow that both the initial error at each iteration and the reference trajectory are iteration-varying in the ILC process, and can achieve non-repetitive trajectory tracking beyond a small initial time interval. Compared to the neural network or fuzzy system-based adaptive ILC schemes and the classical ILC methods, in which the number of iterative variables is generally larger than or equal to the number of control inputs, the first adaptive ILC algorithm proposed in this paper uses just two iterative variables, while the second even uses a single iterative variable provided that some bound information on system dynamics is known. As a result, the memory space in real-time ILC implementations is greatly reduced.  相似文献   

12.
对一类二阶严格反馈时变非线性系统的自适应迭代学习控制问题进行了研究.系统中含有非周期时变参数化不确定性且控制方向未知.首先,提出了一种神经网络估计器,实现了对未知非周期时变非线性函数的逼近.随后,用Nussbaum函数对未知控制方向进行了自适应估计,并综合应用baCkstcpping技术和自适应迭代学习控制技术设计了控制器.所设计的控制器能保证系统所有状态量在Lpe-范数意义下有界,且系统的输出量在LT2-范数意义下收敛到期望轨迹.最后的仿真研究证明了控制器设计方法的有效性.  相似文献   

13.
研究任意初态下,机器人系统的有限时间自适应迭代学习控制方法。引入初始修正吸引子的概念,构造一个含有初始修正项的误差变量。针对定常机器人系统和时变机器人系统,采用Lyapunov-like方法,分别设计迭代学习控制器处理系统中不确定性。并且,采用未含/含限幅学习机制,保证闭环系统各变量的一致有界性和误差变量在整个作业区间一致收敛性。藉以实现跟踪误差在预先指定区间的完全跟踪。仿真结果验证所设计控制方法的有效性。  相似文献   

14.
针对非线性时变系统的迭代学习控制问题提出了一种开闭环PID型迭代学习控制律,并证明了系统满足收敛条件时,具有开闭环PID型迭代学习律的一类非线性时变系统在动态过程存在干扰的情况下控制算法的鲁棒性问题.分析表明,系统在状态干扰、输出干扰和初态干扰有界的情况下跟踪误差有界收敛,在所有干扰渐近重复的情况下可以完全地跟踪给定的期望轨迹.  相似文献   

15.
         下载免费PDF全文
This paper presents an adaptive iterative learning control (AILC) scheme for a class of nonlinear systems with unknown time-varying delays and unknown input dead-zone. A novel nonlinear form of dead-zone nonlinearity is presented. The assumption of identical initial condition for iterative learning control (ILC) is removed by introducing boundary layer function. The uncertainties with time-varying delays are compensated for by using appropriate Lyapunov-Krasovskii functional and Young0s inequality. Radial basis function neural networks are used to model the time-varying uncertainties. The hyperbolic tangent function is employed to avoid the problem of singularity. According to the property of hyperbolic tangent function, the system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapunov-like composite energy function (CEF) in two cases, while keeping all the closedloop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.   相似文献   

16.
孙明轩  何熊熊  陈冰玉 《自动化学报》2007,33(11):1189-1195
Repetitive learning control is presented for finite-time-trajectory tracking of uncertain time-varying robotic systems. A hybrid learning scheme is given to cope with the constant and time-varying unknowns in system dynamics, where the time functions are learned in an iterative learning way, without the aid of Taylor expression, while the conventional differential learning method is suggested for estimating the constant ones. It is distinct that the presented repetitive learning control avoids the requirement for initial repositioning at the beginning of each cycle, and the time-varying unknowns are not necessary to be periodic. It is shown that with the adoption of hybrid learning, the boundedness of state variables of the closed-loop system is guaranteed and the tracking error is ensured to converge to zero as iteration increases. The effectiveness of the proposed scheme is demonstrated through numerical simulation.  相似文献   

17.
非线性系统高阶迭代学习算法   总被引:2,自引:1,他引:2  
结合迭代学习控制算法中的开环和闭环方案,本文针对更一般的非线性系统,讨论高阶算法的广泛适用性。理论和仿真结果表明了高阶算法在输出跟踪和干扰抑制方面的有效性。  相似文献   

18.
Repetitive learning control is presented for finite- time-trajectory tracking of uncertain time-varying robotic sys- tems.A hybrid learning scheme is given to cope with the con- stant and time-varying unknowns in system dynamics,where the time functions are learned in an iterative learning way,without the aid of Taylor expression,while the conventional differential learning method is suggested for estimating the constant ones. It is distinct that the presented repetitive learning control avoids the requirement for initial repositioning at the beginning of each cycle,and the time-varying unknowns are not necessary to be periodic.It is shown that with the adoption of hybrid learning, the boundedness of state variables of the closed-loop system is guaranteed and the tracking error is ensured to converge to zero as iteration increases.The effectiveness of the proposed scheme is demonstrated through numerical simulation.  相似文献   

19.
    
This paper investigates the distributed finite-time trajectory tracking control for a group of nonholonomic mobile robots with time-varying unknown parameters and external disturbances. At first, the tracking error system is derived for each mobile robot with the aid of a global invertible transformation, which consists of two subsystems, one is a first-order subsystem and another is a second-order subsystem. Then, the two subsystems are studied respectively, and finite-time disturbance observers are proposed for each robot to estimate the external disturbances. Meanwhile, distributed finite-time tracking controllers are developed for each mobile robot such that all states of each robot can reach the desired value in finite time, where the desired reference value is assumed to be the trajectory of a virtual leader whose information is available to only a subset of the followers, and the followers are assumed to have only local interaction. The effectiveness of the theoretical results is finally illustrated by numerical simulations.  相似文献   

20.
    
In this paper, we apply a discrete-time learning algorithm to a class of discrete-time varying nonlinear systems with affine input action and linear output having relative degree one. We investigate the robustness of the algorithm to state disturbance, measurement noise and reinitialization errors. We show that the input and the state variables are always bounded if certain conditions are met. Moreover, we shown that the input error and state error converge uniformly to zero in absence of all disturbances. In addition, we show that, after a finite number of iterations, the convergence rate is exponential in l. A numerical example is added to illustrate the results. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号