首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacitor error-averaging technique, updated with look-ahead decision and digital correction, is used to demonstrate a 14-b 20-Msamples/s pipelined analog-to digital converter (ADC) with no trimming or calibration. The prototype ADC exhibits a differential nonlinearity (DNL) of +0.23/-0.28 least significant bit (LSB), an integral nonlinearity (INL) of +0.95/-1.06 LSB, a spurious-free dynamic range (SFDR) of 91.6 dB, and a signal-to-noise ratio (SNR) of 74.2 dB with a 1-MHz input and a 20-MHz clock. The prototype in 0.5-μm CMOS occupies an area of 4.5×2.4 mm2 and consumes 720 mW at 5 V  相似文献   

2.
An 8-bit 80-Msample/s pipelined analog-to-digital converter (ADC) uses monolithic background calibration to reduce the nonlinearity caused by interstage gain errors. Test results show that the ADC achieves a peak signal-to-noise-and-distortion ratio of 43.8 dB, a peak integral nonlinearity of 0.51 least significant bit (LSB), and a peak differential nonlinearity of 0.32 LSB with active background calibration. It dissipates 268 mW from a 3 V supply and occupies 10.3 mm 2 in a single-poly 0.5 μm CMOS technology  相似文献   

3.
Digital calibration using adaptive signal processing corrects for offset mismatch, gain mismatch, and sample-time error between time-interleaved channels in a 10-b 120-Msample/s pipelined analog-to-digital converter (ADC). Offset mismatch between channels is overcome with a random chopper-based offset calibration. Gain mismatch and sample-time error are overcome with correlation-based algorithms, which drive the correlation between a signal and its chopped image or its chopped and delayed image to zero. Test results show that, with a 0.99-MHz sinusoidal input, the ADC achieves a peak signal-to-noise-and-distortion ratio (SNDR) of 56.8 dB, a peak integral nonlinearity of 0.88 least significant bit (LSB), and a peak differential nonlinearity of 0.44 LSB. For a 39.9-MHz sinusoidal input, the ADC achieves a peak SNDR of 50.2 dB. The active area is 5.2 mm/sup 2/, and the power dissipation is 234 mW from a 3.3-V supply.  相似文献   

4.
A 12-b analog-to-digital converter (ADC) is optimized for spurious-free dynamic range (SFDR) performance at low supply voltage and suitable for use in modern wireless base stations. The 6-7-b two-stage pipeline ADC uses a bootstrap circuit to linearize the sampling switch of an on-chip sample-and-hold (S/H) and achieves over 80-dB SFDR for signal frequencies up to 75 MHz at 50 MSample/s (MSPS) without trimming, calibration, or dithering. INL is 1.3 LSB, differential nonlinearity (DNL) is 0.8 LSB. The 6-b and 7-b flash sub-ADCs are implemented efficiently using offset averaging and analog folding. In 0.6-μm CMOS, the 16-mm2 ADC dissipates 850 mW  相似文献   

5.
A 12-bit 20-Msample/s pipelined analog-to-digital converter (ADC) is calibrated in the background using an algorithmic ADC, which is itself calibrated in the foreground. The overall calibration architecture is nested. The calibration overcomes the circuit nonidealities caused by capacitor mismatch and finite operational amplifier (opamp) gain both in the pipelined ADC and the algorithmic ADC. With a 58-kHz sinusoidal input, test results show that the pipelined ADC achieves a peak signal-to-noise-and-distortion ratio (SNDR) of 70.8 dB, a peak spurious-free dynamic range (SFDR) of 93.3 dB, a total harmonic distortion (THD) of -92.9 dB, and a peak integral nonlinearity (INL) of 0.47 least significant bit (LSB). The total power dissipation is 254 mW from 3.3 V. The active area is 7.5 mm/sup 2/ in 0.35-/spl mu/m CMOS.  相似文献   

6.
A 10-bit 40-Msample/s two-channel parallel pipelined ADC with monolithic digital background calibration has been designed and fabricated in a 1 μm CMOS technology. Adaptive signal processing and extra resolution in each channel are used to carry out digital background calibration. Test results show that the ADC achieves a signal-to-noise-and-distortion ratio of 55 dB for a 0.8-MHz sinusoidal input, a peak integral nonlinearity of 0.34 LSB, and a peak differential nonlinearity of 0.14 LSB, both at a 10-bit level. The active area is 42 mm2, and the power dissipation is 565 mW from a 5 V supply  相似文献   

7.
This paper describes the design of a 14-b 75-Msample/s pipeline analog-to-digital converter (ADC) implemented in a 0.35-μm double-poly triple-metal CMOS process. The ADC uses a 4-b first stage to relax capacitor-matching requirements, buffered bootstrapping to reduce signal-dependent charge injection, and a flip-around track-and-hold amplifier with wide common-mode compliance to reduce noise and power consumption. It achieves 14-b accuracy without calibration or dithering. Typical differential nonlinearity is 0.6 LSB, and integral nonlinearity is 2 LSB. The ADC also achieves 73-dB signal-to-noise ratio, and 85-dB spurious-free dynamic range over the first Nyquist band. The 7.8-mm2 ADC operates with a 2.7- to 3.6-V supply, and dissipates 340 mW at 3 V  相似文献   

8.
This paper describes an 8-bit 125 Mhzlow-powerCMOS fully-foldinganalog-to-digital converter(ADC).A novel mixed-averaging distributed T/H circuit is proposed to improve the accuracy. Folding circuits are not only used in the fine converter but also in the coarse one and in the bit synchronization block to reduce the number of comparators for low power. This ADC is implemented in 0.5μm CMOS technology and occupies a die area of 2 × 1.5 mm~2. The measured differential nonlinearity and integral nonlinearity are 0.6 LSB/-0.8 LSB and 0.9 LSB/-1.2 LSB, respectively. The ADC exhibits 44.3 dB of signal-to-noise plus distortion ratio and 53.5 dB of spurious-free dynamic range for 1 MHz input sine-wave. The power dissipation is 138 mW at a sampling rate of 125 MHz at a 5 V supply.  相似文献   

9.
This article presents a design of 14-bit 100?Msamples/s pipelined analog-to-digital converter (ADC) implemented in 0.18?µm CMOS. A charge-sharing correction (CSC) is proposed to remove the input-dependent charge-injection, along with a floating-well bulk-driven technique, a fast-settling reference generator and a low-jitter clock circuit, guaranteeing the high dynamic performance of the ADC. A scheme of background calibration minimises the error due to the capacitor mismatch and opamp non-ideality, ensuring the overall linearity. The measured results show that the prototype ADC achieves spurious-free dynamic range (SFDR) of 91?dB, signal-to-noise-and-distortion ratio (SNDR) of 73.1?dB, differential nonlinearity (DNL) of +0.61/?0.57?LSB and integrated nonlinearity (INL) of +1.1/?1.0?LSB at 30?MHz input and maintains over 78?dB SFDR and 65?dB SNDR up to 425?MHz, consuming 223?mW totally.  相似文献   

10.
介绍了采用0.18μm数字工艺制造、工作在3.3V下、10位100MS/s转换速率的流水线模数转换器。提出了一种适用于1.5位MDAC的新的金属电容结构,并且使用了高带宽低功耗运算放大器、对称自举开关和体切换的PMOS开关来提高电路性能。芯片已经通过流片验证,版图面积为1.35mm×0.99mm,功耗为175mW。14.7MS/s转换速率下测得的DNL和INL分别为0.2LSB和0.45LSB,100MS/s转换速率下测得的DNL和INL分别为1LSB和2.7LSB,SINAD为49.4dB,SFDR为66.8dB。  相似文献   

11.
A 12-bit 80-MSample/s pipelined ADC with bootstrapped digital calibration   总被引:1,自引:0,他引:1  
This paper presents a prototype analog-to-digital converter (ADC) that uses a calibration algorithm to adaptively overcome constant closed-loop gain errors, closed-loop gain variation, and slew-rate limiting. The prototype consists of an input sample-and-hold amplifier (SHA) that can serve as a calibration queue, a 12-bit 80-MSample/s pipelined ADC, a digital-to-analog converter (DAC) for calibration, and an embedded custom microprocessor, which carries out the calibration algorithm. The calibration is bootstrapped in the sense that the DAC is used to calibrate the ADC, and the ADC is used to calibrate the DAC. With foreground calibration, test results show that the peak differential nonlinearity (DNL) is -0.09 least significant bits (LSB), and the peak integral nonlinearity (INL) is -0.24LSB. Also, the maximum signal-to-noise-and-distortion ratio (SNDR) and spurious-free dynamic range (SFDR) are 71.0 and 79.6dB with a 40-MHz sinusoidal input, respectively. The prototype occupies 22.6 mm/sup 2/ in a 0.25-/spl mu/m CMOS technology and dissipates 755 mW from a 2.5-V supply.  相似文献   

12.
This paper describes a 10 or 12 bit programmable successive approximation register ADC for bridge stress monitoring systems requiring high-resolution, high linearity, low power and small size. Its sampling rate is scalable, from 0 to 200 kS/s. The proposed ADC employs a novel time-domain comparator with offset cancellation. Prototyped in a 0.18-μm, 6MIP CMOS process, the ADC, at 12 bit, 100 kS/s, achieves a Nyquist SNDR of 68.74 dB (11.13), an SFDR of 90.36 dB, while dissipating 579.6 μW from a 1.8-V supply. The on-chip calibration improves the DNL from +0.2/?0.74 LSB to +0.23/?0.25 LSB and INL from +1.27/?0.97 LSB to +0.41/?0.4 LSB.  相似文献   

13.
为了满足时间延时积分(TDI)CMOS图像传感器转换全差分信号的需要,同时符合列并行电路列宽的限制,该文提出并实现了一种10 bit全差分双斜坡模数转换器(ADC)。在列并行单斜坡ADC的基础上,采用2个电容的上极板对差分输入进行采样,电容下极板接2个斜坡输出完成量化。基于电流舵结构的斜坡发生器同时产生上升和下降斜坡,2个斜坡的台阶电压大小相等。该电路使用SMIC 0.18 μm CMOS工艺设计实现,ADC以19.49 kS/s的采样频率对1.32 kHz的输入进行采样,仿真得到无杂散动态范围和有效位数分别为87.92 dB和9.84 bit。测试显示该ADC的微分非线性误差和积分非线性误差分别为–0.7/+0.6 LSB和–2.6/+2.1 LSB。  相似文献   

14.
To reduce power dissipation, the input sample-and-hold amplifier (SHA) is eliminated in a pipelined analog-to-digital converter (ADC) with nested background calibration. The nested architecture calibrates the pipelined ADC with an algorithmic ADC that is also calibrated. Without an input SHA, a timing difference between the sampling instants of the two ADCs creates an error that interferes with calibration of the pipelined ADC. This problem is overcome with digital background timing compensation. It uses a differentiator with fixed coefficients to build an adaptive interpolator. With a 58-kHz sinusoidal input, the 12-bit 20-Msample/s pipelined ADC achieves a signal-to-noise-and-distortion ratio (SNDR) of 70.2 dB, a spurious-free dynamic range (SFDR) of 80.3 dB, and an integral nonlinearity (INL) of 0.75 least significant bit (LSB). With a 9-MHz input, the SNDR is 64.2 dB, and the SFDR is 78.3 dB. About 2 million samples or 0.1 s are required for convergence. The prototype occupies 7.5 mm2 in 0.35-mum CMOS and dissipates 231 mW from 3.3 V, which is 23 mW less than in a previous prototype with the input SHA.  相似文献   

15.
莫太山  叶甜春  马成炎   《电子器件》2008,31(3):853-858
首先对用于CMOS低中频GPS接收机的模数转换器(ADC)进行了设计考虑.由ADC引入的信噪比降低与四个因素有关:中频带宽,采样率,ADC的比特数及ADC的最大阈值与噪声均方根比值.在设计考虑的基础上,采用TSMC 0.25tan CMOS单层多晶硅五层金属工艺实现了一个4 bit 16.368 MHz闪烁型模数转换器,并将重点放在了前置放大器和提出的新的比较器的设计和优化上.在时钟采样率16.368 MHz和输入信号频率4.092 MHz的条件下,转换器测试得到的信噪失真比为24.7 dB,无杂散动态范围为32.1 dB,积分非线性为 0.31/-0.46LSB,差分非线性为 0.66/-0.46LSB,功耗为3.5mW.ADC占用芯片面积0.07 mm2.  相似文献   

16.
This paper describes the design and implementation of a fully monolithic 16-b, 1 Msample/s, low-power A/D converter (ADC). An on-chip 32-b custom microcontroller calibrates and corrects the pipeline linearity to within 0.75 LSB integral nonlinearity (INL) and 0.6 LSB differential nonlinearity (DNL). High speed and low power are achieved using a pipelined architecture. Errors resulting from capacitor mismatches, finite op-amp open loop gain, charge injection and comparator offset are removed through self-calibration. Coefficients determined during calibration are stored on chip, digitally correcting the pipeline ADC in real time during normal conversion, Full-scale errors are removed through self-calibration and an-chip multiplication. Linearity errors due to capacitor voltage coefficients are reduced using a curve fit algorithm and on-chip ROM. Digital cross-talk errors resulting from the microcontroller running at a rate of ten times the analog sampling rate have prevented implementations of fully monolithic converters of this performance class in the past. Mismatches in cross-talk due to different digital timing between calibration and correction lead to linearity errors at critical correction points. Experimental analysis and circuit techniques which overcome these problems are presented  相似文献   

17.
A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR   总被引:6,自引:0,他引:6  
A 1.8-V 14-b 12-MS/s pseudo-differential pipeline analog-to-digital converter (ADC) using a passive capacitor error-averaging technique and a nested CMOS gain-boosting technique is described. The converter is optimized for low-voltage low-power applications by applying an optimum stage-scaling algorithm at the architectural level and an opamp and comparator sharing technique at the circuit level. Prototyped in a 0.18-/spl mu/m 6M-1P CMOS process, this converter achieves a peak signal-to-noise plus distortion ratio (SNDR) of 75.5 dB and a 103-dB spurious-free dynamic range (SFDR) without trimming, calibration, or dithering. With a 1-MHz analog input, the maximum differential nonlinearity is 0.47 LSB and the maximum integral nonlinearity is 0.54 LSB. The large analog bandwidth of the front-end sample-and-hold circuit is achieved using bootstrapped thin-oxide transistors as switches, resulting in an SFDR of 97 dB when a 40-MHz full-scale input is digitized. The ADC occupies an active area of 10 mm/sup 2/ and dissipates 98 mW.  相似文献   

18.
A monolithic 12-b 1 MHz, two-step flash analog-to-digital converter (ADC) has been implemented in standard 3-μm CMOS technology. A 12-b accurate reference bank incorporating a switched-capacitor integrator and a bank of 66 sample-and-hold amplifiers is discussed. Self-calibration techniques are used to correct for the converter offset, gain, and nonlinearity errors. The converter differential nonlinearity errors below 1/2 LSB and the S/(N+D) signal to noise is 70 dB for 100-kHz analog input  相似文献   

19.
本文提出了一种用于校准流水线模数转换器线性误差的数字后台校准算法。该算法不需要修改转换器级电路部分,只需要一部分用于统计模数转换器输出码的数字电路即可完成。通过分析流水线模数转换器输出的数字码,该算法可以计算出每一级级电路对应的权重。本文利用一个14位的流水线模数转换器来验证该算法。测试结果显示,转换器的积分非线性由90LSB下降到0.8LSB,微分非线性由2LSB下降到0.3LSB;信噪失真比从38dB提高到66.5dB,总谐波失真从-37dB下降到-80dB。转换器的线性度有很大提高。  相似文献   

20.
提出了一种数字前台校准技术,即电容重组技术,并将该技术与LMS数字后台校准技术相结合,提高了LMS算法的收敛速度。提出的算法使用RC混合结构的14位SAR ADC进行建模。仿真结果表明,LMS算法的收敛速度可以提高到1 k个转换周期内,同时校准后ADC的ENOB平均值从10.59 bit提高到13.79 bit。SFDR平均值从71.33 dB提高到112.93 dB,DNL最大值的平均值从1.88 LSB提高到0.97 LSB。INL最大值的平均值从8.01 LSB提高到0.88 LSB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号