首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neonate fall armyworms [FAW; Spodoptera frugiperda (Smith)] often encounter conspecific herbivore damage as they disperse from an egg mass to an initial feeding site. We investigated the orientation responses of dispersing neonates to herbivore damage in cowpea seedlings, specifically examining whether neonate behaviors were affected by inceptin, the primary elicitor of FAW-induced defenses in cowpea leaves. We focused on responses to damage caused by conspecific first instars, as might occur during the dispersal of siblings from an egg mass. Inceptin contents of damaging first instar FAW were controlled through their diets, with leaf-fed FAW producing inceptins in their oral secretions, and root-fed or starved FAW lacking these elicitors. In a bioassay designed to evaluate neonate dispersal off a host plant, a higher percentage of neonates remained on herbivore-induced or inceptin-treated plants than on undamaged plants, mechanically damaged plants, freshly damaged plants, or on plants damaged by FAW lacking inceptins. Further investigations of neonate responses to plant odors with a four-arm olfactometer demonstrated that neonate attraction to odors from 4-h old FAW damage was strongly dependent on previous diet of the damaging larvae. Neonates were attracted to odors from 4-h old FAW damage over odors from undamaged plants or fresh FAW damage, provided that the damaging larvae had previously ingested leaf material. In a direct comparison of odors from induced plants, plants damaged by leaf-fed FAW were as attractive as plants treated with synthetic inceptin. GC-MS analysis confirmed that (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) was the major volatile induced by FAW herbivory. While both DMNT and undamaged plant odors were more attractive than air, neonates preferred DMNT-supplemented plant odors. These results suggest that neonate FAW exploit herbivore-induced plant volatiles as host plant location and recognition cues. The use of trade, firm, or corporation names in this publication (or page) is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.  相似文献   

2.
Anagrus nilaparvatae, an egg parasitoid of the rice brown planthopper Nilaparvata lugens, was attracted to volatiles released from N. lugens-infested plants, whereas there was no attraction to volatiles from undamaged plants, artificially damaged plants, or volatiles from N. lugens nymphs, female adults, eggs, honeydew, and exuvia. There was no difference in attractiveness between plants infested by N. lugens nymphs or those infested by gravid females. Attraction was correlated with time after infestation and host density; attraction was only evident between 6 and 24 hr after infestation by 10 adult females per plant, but not before or after. Similarly, after 24 hr of infestation, wasps were attracted to plants with 10 to 20 female planthoppers, but not to plants with lower or higher numbers of female planthoppers. The attractive time periods and densities may be correlated with the survival chances of the wasps' offspring, which do not survive if the plants die before the wasps emerge. Wasps were also attracted to undamaged mature leaves of a rice plant when one of the other mature leaves had been infested by 10 N. lugens for 1 d, implying that the volatile cues involved in host location by the parasitoid are systemically released. Collection and analyses of volatiles revealed that 1 d of N. lugens infestation did not result in the emission of new compounds or an increase in the total amount of volatiles, but rather the proportions among the compounds in the blend were altered. The total amounts and proportions of the chemicals were also affected by infestation duration. These changes in volatile profiles might provide the wasps with specific information on host habitat quality and thus could explain the observed behavioral responses of the parasitoid.  相似文献   

3.
The effects of limonene, a mixture of limonene + carvone (1:1, v/v), and methyl jasmonate (MeJA) on diamondback moth (DBM) (Plutella xylostella L.) oviposition, larval feeding, and the behavior of its larval parasitoid Cotesia plutellae (Kurdjumov) with cabbage (Brassica oleracea L. ssp. capitata, cvs. Rinda and Lennox) and broccoli (B. oleracea subsp. Italica cv Lucky) were tested. Limonene showed no deterrent effect on DBM when plants were sprayed with or exposed to limonene, although there was a cultivar difference. A mixture of limonene and carvone released from vermiculite showed a significant repellent effect, reducing the number of eggs laid on the cabbages. MeJA treatment reduced the relative growth rate (RGR) of larvae on cv Lennox leaves. In Y-tube olfactometer tests, C. plutellae preferred the odors of limonene and MeJA to filtered air. In cv Lennox, the parasitoid preferred DBM-damaged plants with limonene to such plants without limonene. C. plutellae females were repelled by the mixture of limonene + carvone. In both cultivars, exogenous MeJA induced the emission of the sesquiterpene (E,E)-α-farnesene, the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and green leaf volatile (Z)-3-hexenyl acetate + octanal. The attractive effect of limonene and MeJA predicts that these two compounds can be used in sustainable plant protection strategies in organic farming.  相似文献   

4.
Interactions between butterflies and caterpillars in the genus Pieris and plants in the family Brassicaceae are among the best explored in the field of insect–plant biology. However, we report here for the first time that Pieris brassicae, commonly assumed to be a typical folivore, actually prefers to feed on flowers of three Brassica nigra genotypes rather than on their leaves. First- and second-instar caterpillars were observed to feed primarily on leaves, whereas late second and early third instars migrated via the small leaves of the flower branches to the flower buds and flowers. Once flower feeding began, no further leaf feeding was observed. We investigated growth rates of caterpillars having access exclusively to either leaves of flowering plants or flowers. In addition, we analyzed glucosinolate concentrations in leaves and flowers. Late-second- and early-third-instar P. brassicae caterpillars moved upward into the inflorescences of B. nigra and fed on buds and flowers until the end of the final (fifth) instar, after which they entered into the wandering stage, leaving the plant in search of a pupation site. Flower feeding sustained a significantly higher growth rate than leaf feeding. Flowers contained levels of glucosinolates up to five times higher than those of leaves. Five glucosinolates were identified: the aliphatic sinigrin, the aromatic phenyethylglucosinolate, and three indole glucosinolates: glucobrassicin, 4-methoxyglucobrassicin, and 4-hydroxyglucobrassicin. Tissue type and genotype were the most important factors affecting levels of identified glucosinolates. Sinigrin was by far the most abundant compound in all three genotypes. Sinigrin, 4-hydroxyglucobrassicin, and phenylethylglucosinolate were present at significantly higher levels in flowers than in leaves. In response to caterpillar feeding, sinigrin levels in both leaves and flowers were significantly higher than in undamaged plants, whereas 4-hydroxyglucobrassicin leaf levels were lower. Our results show that feeding on flower tissues, containing higher concentrations of glucosinolates, provides P. brassicae with a nutritional benefit in terms of higher growth rate. This preference appears to be in contrast to published negative effects of volatile glucosinolate breakdown products on the closely related Pieris rapae.  相似文献   

5.
Ethanolic extract of aerial parts of Artemisia annua L. and artemisinin were evaluated as anti-insect products. In a feeding deterrence assay on Epilachna paenulata Germ (Coleoptera: Coccinellidae) larvae, complete feeding rejection was observed at an extract concentration of 1.5 mg/cm2 on pumpkin leaf tissue. The same concentration produced a feeding inhibition of 87% in Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae). In a no-choice assay, both species ate less and gained less weight when fed on leaves treated with the extract. Complete mortality in E. paenulata and 50% mortality in S. eridania were observed with extract at 1.5 mg/cm2. Artemisinin exhibited a moderate antifeedant effect on E. paenulata and S. eridania at 0.03–0.375 mg/cm2. However, a strong effect on survival and body weight was observed when E. paenulata larvae were forced to feed on leaves treated at 0.03 and 0.075 mg/cm2. Artemisia annua ethanolic extract of aerial parts at 1.5 mg/cm2 showed no phytotoxic effect on pumpkin seedlings.  相似文献   

6.
Herbivore feeding activates plant defenses at the site of damage as well as systemically. Systemic defenses can be induced internally by signals transported via phloem or xylem, or externally transmitted by volatiles emitted from the damaged tissues. We investigated the role of herbivore-induced plant volatiles (HIPVs) in activating a defense response between branches in blueberry plants. Blueberries are perennial shrubs that grow by initiating adventitious shoots from a basal crown, which produce new lateral branches. This type of growth constrains vascular connections between shoots and branches within plants. While we found that leaves within a branch were highly connected, vascular connectivity was limited between branches within shoots and absent between branches from different shoots. Larval feeding by gypsy moth, exogenous methyl jasmonate, and mechanical damage differentially induced volatile emissions in blueberry plants, and there was a positive correlation between amount of insect damage and volatile emission rates. Herbivore damage did not affect systemic defense induction when we isolated systemic branches from external exposure to HIPVs. Thus, internal signals were not capable of triggering systemic defenses among branches. However, exposure of branches to HIPVs from an adjacent branch decreased larval consumption by 70% compared to those exposed to volatiles from undamaged branches. This reduction in leaf consumption did not result in decreased volatile emissions, indicating that leaves became more responsive to herbivory (or “primed”) after being exposed to HIPVs. Chemical profiles of leaves damaged by gypsy moth caterpillars, exposed to HIPVs, or non-damaged controls revealed that HIPV-exposed leaves had greater chemical similarities to damaged leaves than to control leaves. Insect-damaged leaves and young HIPV-exposed leaves had higher amounts of endogenous cis-jasmonic acid compared to undamaged and non-exposed leaves, respectively. Our results show that exposure to HIPVs triggered systemic induction of direct defenses against gypsy moth and primed volatile emissions, which can be an indirect defense. Blueberry plants appear to rely on HIPVs as external signals for inter-branch communication.  相似文献   

7.
Two issues have hindered the understanding of the ecology and evolution of volatile-mediated tritrophic interactions: few studies have addressed noncrop systems; and few statistical techniques have been applied that are suitable for the analysis of complex volatile blends. In this paper, we addressed both of these issues by studying the noncrop system involving the plant Centaurea nigra, the specialist aphid Uroleucon jaceae, and the parasitoid Aphidius funebris. In a Y-tube olfactometer, A. funebris was attracted to the odor from undamaged C. nigra, but preferred the plant–host complex (PHC) after 3 d of feeding by 200 U. jaceae over the undamaged plant, but not after three or 5 d of feeding by 50 U. jaceae. When aphids were removed, the initial preference for the damaged plant remained, but the final preference was not greater than for the undamaged plant. No qualitative differences were detected between the headspaces of C. nigra and the C. nigraU. jaceae PHC. For quantitative analysis, we used a compositional approach, which treats each compound produced as part of a blend, and not as a compound released in isolation, thus allowing analysis of the relative contribution of each compound to the blend as a whole. With this approach, subtle increases and decreases of some green leaf volatiles and monoterpenoids on the third day of aphid infestation were detected. Mechanically damaged C. nigra had a volatile profile that differed from undamaged C. nigra and the PHC. One and 10 ng of (Z)-3-hexenyl acetate, and 10 or 100 ng of 6-methyl-5-hepten-2-one were attractive to the parasitoid when placed in solution on filter paper. A. funebris appears to be using a combination of chemical cues to locate host-infested plants.  相似文献   

8.
Macaranga myrmecophytes harbor species-specific Crematogaster ants that defend host trees from herbivores. We examined ant aggressive behaviors when artificially damaged leaf pieces from another tree were offered to four sympatric species of obligate Macaranga myrmecophytes. The ants showed aggressive behavior in response to leaf pieces regardless of the leaf species; however, aggressiveness was higher when conspecific leaf pieces were offered than when nonhost species were offered. Thus, ants can recognize leaf damage and distinguish among damaged leaf species. Chemical analyses of volatile compounds emitted from damaged leaves that may induce ant defense showed that the composition of the minor compounds differed among the four Macaranga species, although there were many compounds in common.  相似文献   

9.
Larvae and adults of Altica cyanea (Weber) (Coleoptera: Chrysomelidae) feed on the rice-field weed Ludwigia octovalvis (Jacq.) Raven (Onagraceae), commonly known as willow primrose, which is considered a biocontrol agent of the weed. Volatile organic compounds from undamaged plants, plants after 4, 12, and 36 h of continuous feeding by A. cyanea larvae or adult females and after mechanical damaging were identified by GC-MS and GC-FID analyses. Twenty nine compounds were identified from undamaged plants. 2Z–Penten-1-ol, geraniol, and 1-tridecanol were present in all plants damaged by larvae. In contrast, feeding by adults caused the release of 2Z–penten-1-ol only after 12 and 36 h; whereas geraniol and 1-tridecanol appeared only after 36 h. Farnesyl acetone was detected after 12 and 36 h of feeding by larvae and after 36 h of feeding by adults. Farnesene was detected after 36 h of feeding by larvae and adults. Linalool was unique after 36 h of feeding by larvae. In Y-shaped glass tube olfactometer bioassays, A. cyanea females were attracted to volatiles after 36 h of feeding by larvae or adults compared to volatiles released by undamaged plants. The insects were attracted to five synthetic compounds: 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol. Synthetic blends were more attractive than individual compounds. Compared to undamaged plants, volatiles released by plants, damaged by conspecific individuals, were more attractive to A. cyanea females, due to elevated emissions of 3-hexanol, α-pinene, linalool oxide, geraniol, and phytol.  相似文献   

10.
Tomato (Solanum lycopersicum) polyphenol oxidases (PPOs), enzymes that oxidize phenolics to quinones, have been implicated in plant resistance to insects. The role of PPO in resistance to cotton bollworm [Helicoverpa armigera (Hübner)] and beet armyworm [Spodoptera exigua (Hübner)] (Lepidoptera: Noctuidae) was evaluated. Consumption, weight gains, and mortality of larvae feeding on foliage of transgenic tomato lines overexpressing PPO (OP lines) and of larvae feeding on foliage of transgenic tomato lines with suppressed PPO (SP lines) were compared with consumption, weight gains, and mortality of larvae feeding on non-transformed (NT) plants. Increases in foliage consumption and weight gains were observed for cotton bollworms feeding on leaves of SP plants compared to NT and OP plants. PPO activity was negatively correlated with both weight gains and foliar consumption of cotton bollworm, substantiating the defensive role of PPO against this insect. Similarly, beet armyworm consumed less foliage (both young and old leaves) from OP plants than SP plants. Larvae feeding on OP leaves generally exhibited lower weight gains than those feeding on SP leaves. These results indicate that tomato PPO plays a role in resistance to both cotton bollworm and beet armyworm.  相似文献   

11.
Brugmansia suaveolens (Solanaceae) contains tropane alkaloids (TAs), which can act as chemical defenses. Selective pressures might modulate the allocation of alkaloids within the plant, as postulated by optimal-defense theory. By tracing scopolamine, the most abundant TA in this species, we found that scopolamine in an artificial diet, in concentrations similar to those in leaves of B. suaveolens, increased mortality and prolonged developmental time of the larvae of the generalist noctuid moth Spodoptera frugiperda. A diet of undamaged leaves of B. suaveolens also showed a large negative effect on the growth of larvae of S. frugiperda compared to a diet of leaves of Ricinus communis, a species that did not have negative effects on this moth; more valuable plant parts, such as young leaves, flowers, and unripe fruits with seeds, have higher scopolamine concentrations than other tissues; leaves of B. suaveolens increase their content of scopolamine after artificial damage. The highest induction was found 24 hr after the damage, and after that, scopolamine content decreased to constitutive levels. This increase represented a cost, because in another experiment, a treatment with methyl jasmonate, an elicitor hormone, increased scopolamine production 9.5-fold and decreased leaf growth 2.3-fold; a diet of artificially damaged leaves of B. suaveolens showed a negative effect on the growth of larvae of S. furgiperda compared to undamaged leaves, suggesting that damage by herbivores induces resistance. Our data are in line with the optimal-defense theory, but experiments in the field with herbivores that share an evolutionary history with B. suaveolens must be undertaken to understand the dynamics of TA allocation in response to herbivory.  相似文献   

12.
The odor produced by a plant under herbivore attack is often used by parasitic wasps to locate hosts. Any type of surface damage commonly causes plant leaves to release so-called green leaf volatiles, whereas blends of inducible compounds are more specific for herbivore attack and can vary considerably among plant genotypes. We compared the responses of naïve and experienced parasitoids of the species Cotesia marginiventris and Microplitis rufiventris to volatiles from maize leaves with fresh damage (mainly green leaf volatiles) vs. old damage (mainly terpenoids) in a six-arm olfactometer. These braconid wasps are both solitary endoparasitoids of lepidopteran larvae, but differ in geographical origin and host range. In choice experiments with odor blends from maize plants with fresh damage vs. blends from plants with old damage, inexperienced C. marginiventris showed a preference for the volatiles from freshly damaged leaves. No such preference was observed for inexperienced M. rufiventris. After an oviposition experience in hosts feeding on maize plants, C. marginiventris females were more attracted by a mixture of volatiles from fresh and old damage. Apparently, C. marginiventris has an innate preference for the odor of freshly damaged leaves, and this preference shifts in favor of a blend containing a mixture of green leaf volatiles plus terpenoids, after experiencing the latter blend in association with hosts. M. rufiventris responded poorly after experience and preferred fresh damage odors. Possibly, after associative learning, this species uses cues that are more directly related with the host presence, such as volatiles from host feces, which were not present in the odor sources offered in the olfactometer. The results demonstrate the complexity of the use of plant volatiles by parasitoids and show that different parasitoid species have evolved different strategies to exploit these signals.  相似文献   

13.
The larvae of three races of Heliconius erato were fed various species of Passiflora containing varying levels of cyanoglucosides. The mortality rate of larvae and pupae rose when larvae were fed species of Passiflora capable of releasing larger quantities of cyanide. When larvae were fed species of Passiflora with these properties, the resulting adult butterflies also released higher levels of cyanide. This may serve as a defense mechanism. The compounds responsible for the release of cyanide were not evenly distributed throughout the adult butterfly’s body. The thorax contained the highest concentration of cyanogenic substances, followed by the head, wings, and abdomen. The younger tissues of Passiflora plants had higher levels of cyanide-releasing compounds than stems and mature leaves. Cyanogenic glycoside distribution within the plants is consistent with optimal allocation theory. The levels of cyanide-releasing substances in plants varied depending on the season.  相似文献   

14.
The subepidermal pigment glands of cotton accumulate a variety of terpenoid products, including monoterpenes, sesquiterpenes, and terpenoid aldehydes that can act as feeding deterrents against a number of insect herbivore species. We compared the effect of herbivory by Spodoptera littoralis caterpillars, mechanical damage by a fabric pattern wheel, and the application of jasmonic acid on levels of the major representatives of the three structural classes of terpenoids in the leaf foliage of 4-week-old Gossypium hirsutum plants. Terpenoid levels increased successively from control to mechanical damage, herbivory, and jasmonic acid treatments, with E-β-ocimene and heliocide H1 and H4 showing the highest increases, up to 15-fold. Herbivory or mechanical damage to older leaves led to terpenoid increases in younger leaves. Leaf-by-leaf analysis of terpenes and gland density revealed that higher levels of terpenoids were achieved by two mechanisms: (1) increased filling of existing glands with terpenoids and (2) the production of additional glands, which were found to be dependent on damage intensity. As the relative response of individual terpenoids did not differ substantially among herbivore, mechanical damage, and jasmonic acid treatments, the induction of terpenoids in cotton foliage appears to represent a non-specific wound response mediated by jasmonic acid. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The vast majority of studies of plant indirect defense strategies have considered simple tritrophic systems that involve plant responses to attack by a single herbivore species. However, responses by predators and parasitoids to specific, herbivore-induced, volatile blends could be compromised when two or more different herbivores are feeding on the same plant. In Y-tube olfactometer studies, we investigated the responses of an aphid parasitoid, Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae), to odors from cabbage plants infested with the peach-potato aphid Myzus persicae (Sulzer) (Homoptera: Aphididae), in both the presence and absence of a lepidopteran caterpillar, Plutella xylostella L. (Lepidoptera: Plutellidae). Female parasitoids chose aphid-infested plants over uninfested plants but did not distinguish between caterpillar-infested and uninfested plants. When given a choice between odors from an aphid-infested plant and those from a plant infested with diamondback moth larvae, they significantly chose the former. Furthermore, the parasitoids responded equally to odors from a plant infested with aphids only and those from a plant infested with both aphids and caterpillars. The results support the hypothesis that the aphid and the caterpillar induce different changes in the volatile profile of cabbage plants and that D. rapae females readily distinguish between the two. Furthermore, the changes to the plant volatile profile induced by the caterpillar damage did not hinder the responses of the parasitoid to aphid-induced signals.  相似文献   

16.
Attraction of the mosquitoes Aedes aegypti and Ae. albopictus to plant infusions was evaluated by using a modified sticky-screen bioassay that improved the resolution of mosquito responses to odorants. Under bioassay conditions, solid-phase microextraction-gas chromatographic analyses of the volatile marker chemical indole showed that odorants diffused from bioassay cups, forming a concentration gradient. Infusions were prepared by separately fermenting senescent leaves of eight plant species in well water. Plant infusions were evaluated over an 8-fold range of leaf biomass and/or a 28 d fermentation period. The responses of gravid females of both mosquito species varied with the plant species and biomass of plant materials used to make infusions, and with the length of the fermentation period. Infusions made from senescent bamboo (Arundinaria gigantea) and white oak (Quercus alba) leaves were significantly attractive to both mosquitoes. In general, infusions prepared by using low biomass of plant material over a 7–14 d fermentation period were most attractive to Ae. aegypti. In contrast, Ae. albopictus was attracted to infusions made using a wider range of plant biomass and over a longer fermentation period. Both mosquito species were more attracted to a non-sterile white oak leaf infusion than to white oak leaf infusion that was prepared using sterilized plant material and water, thus suggesting a role for microbial activity in the production of odorants that mediate the oviposition response of gravid mosquitoes.  相似文献   

17.
Insect folivores can cause extensive damage to plants. However, different plant species, and even individuals within species, can differ in their susceptibility to insect attack. Polyphenols that readily oxidize have recently gained attention as potential defenses against insect folivores. We tested the hypothesis that variation in oxidizable phenolic concentrations in Eucalyptus foliage influences feeding and survival of Paropsis atomaria (Eucalyptus leaf beetle) larvae. First we demonstrated that oxidizable phenolic concentrations vary both within and between Eucalyptus species, ranging from 0 to 61 mg.g?1 DM (0 to 81% of total phenolics), in 175 samples representing 13 Eucalyptus species. Foliage from six individuals from each of ten species of Eucalyptus were then offered to batches of newly hatched P. atomaria larvae, and feeding, instar progression and mortality of the first and second instar larvae were recorded. Although feeding and survival parameters differed dramatically between individual plants, they were not influenced by the oxidizable phenolic concentration of leaves, suggesting that P. atomaria larvae may have effective mechanisms to deal with oxidizable phenolics. Larvae feeding on plants with higher nitrogen (N) concentrations had higher survival rates and reached third instar earlier, but N concentrations did not explain most of the variation in feeding and survival. The cause of variation in eucalypt herbivory by P. atomaria larvae is therefore still unknown, although oxidizable phenolics could potentially defend eucalypt foliage against other insect herbivores.  相似文献   

18.
Larvae of the coccinellid beetle Cheilomenes sexmaculata (F.) produce an oviposition-deterring pheromone that inhibits egg laying of conspecific females on oviposition sites walked over by first-instar larvae. By use of bioassay-guided fractionation of larval extracts, (Z)-pentacos-12-ene was identified as an active component of the cuticular hydrocarbons of the larvae. Other compounds that occur in the active fractions, such as the alkaloid coccinelline and saturated hydrocarbons, were individually tested but proved to be inactive. The synthesis of (Z)-pentacos-12-ene is reported.  相似文献   

19.
The sex pheromone of the chrysanthemum gall midge, Rhopalomyia longicauda (Diptera: Cecidomyiidae), the most important insect pest in commercial plantations of chrysanthemum, Dendranthema morifolium (Ramat.) Tzvel., in China, was identified, synthesized, and field-tested. Volatile chemicals from virgin females and males were collected on Porapak in China and sent to the United Kingdom for analysis. Coupled gas chromatographic–electroantennographic detection (GC-EAG) analysis of volatile collections from females revealed two compounds that elicited responses from antennae of males. These compounds were not present in collections from males. The major EAG-active compound was identified as 2-butyroxy-8-heptadecene by gas chromatographic (GC) retention indices, mass spectra, in both electron impact and chemical ionization modes, hydrogenation, epoxidation, and derivatization with dimethyldisulfide. The lesser EAG-active compound was identified as the corresponding alcohol. The ratio of butyrate to alcohol in the collections was 1:0.26. Racemic (Z)-8-heptadecen-2-ol and the corresponding butyrate ester were synthesized from (Z)-7-hexadecenyl acetate, and the synthetic compounds found to have identical GC retention indices and mass spectra to those of the natural, female-specific components. Analysis of the volatile collections on an enantioselective cyclodextrin GC column showed the natural pheromone contained (2S,8Z)-2-butyroxy-8-heptadecene. Field tests showed that rubber septa containing racemic (Z)-2-butyroxy-8-heptadecene were attractive to R. longicauda males. The (naturally occurring) S-enantiomer was equally as attractive as the racemate, while the R-enantiomer was not attractive to males, and did not inhibit the activity of the S-enantiomer. The attractiveness of the butyrate was significantly reduced by the presence of even small amounts of the corresponding alcohol.  相似文献   

20.
Ageratum conyzoides L. weed often invades cultivated fields and reduces crop productivity in Southeast Asia and South China. However, intercropping this weed in citrus orchards may increase the population of predatory mite Amblyseius newsami, an effective natural enemy of citrus red mite Panonychus citri, and keep the population of P. citri at low and noninjurious levels. This study showed that A. conyzoides produced and released volatile allelochemicals into the air in the intercropped citrus orchard, and these volatiles influenced the olfactory responses of A. newsami and P. citri. At test temperature (25°C), A. conyzoides fresh leaves, its essential oil, and major constituents, demethoxy-ageratochromene, β-caryophyllene, α-bisabolene, and E-β-farnesene, attracted A. newsami and slightly repelled P. citri. Field experiments demonstrated that spraying A. conyzoides essential oil emulsion in an A. conyzoides nonintercropped citrus orchard increased the population density of A. newsami from below 0.1 to over 0.3 individuals per leaf, reaching the same level as in an A. conyzoides intercropped citrus orchard. However, this effect could not be maintained beyond 48 hr because of the volatility of the essential oil. In contrast, in the A. conyzoides intercropped citrus orchard, A. conyzoides plants continuously produced and released volatile allelochemicals and maintained the A. newsami population for a long time. The results suggest that intercropping of A. conyzoides not only made the citrus orchard ecosystem more favorable for the predatory mite A. newsami, but also that the volatile allelochemicals released from A. conyzoides regulated the population of A. newsami and P. citri.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号