首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 103 毫秒
1.
多米尼加蓝色宝石Larimar的宝石学研究   总被引:1,自引:0,他引:1  
目前,在国内珠宝首饰市场出现了一种被称作Larimar的宝石。对来自广州珠宝市场的Larimar样品的宝石学特征、化学成分、X射线粉末衍射和红外光谱进行了测试。结果表明,该Larimar样品的主要矿物组成为针钠钙石,含有极少量的辉铜矿和一种未能确定种属的含Cu硫化物。其紫外-可见吸收光谱分析表明,该Larimar样品的吸收特征与Cu有关。结合样品的吸收光谱特征、宝石学特征和化学成分推测,Larimar样品的蓝色可能与分布于针钠钙石中的含Cu硫化物有关。Larimar种属的确定对其鉴定及名称的规范有一定的指导意义。  相似文献   

2.
蓝色翡翠的呈色机制探讨   总被引:1,自引:0,他引:1  
近期广东市场上出现了一种来自缅甸的蓝色翡翠样品,该样品目前未见相关报道.为了确定其定名,通过常规宝石学测试、红外光谱和X射线粉末衍射测试对样品进行分析,表明样品的主要矿物组成为硬玉,质量分数约97.1%,检测鉴定结论为翡翠.为了对蓝色翡翠呈色机制进行研究,通过紫外-可见吸收光谱测试,表明可见光区480 nm以后逐渐增强的吸收带是其产生蓝色的原因;采用电子探针进行化学成分测试,表明蓝色的成因与钒离子有关.根据3d过渡金属离子的晶体场理论和翡翠晶体场理论的研究,可以推测:由于翡翠结构中M1位的Al3+被过渡金属离子钒(V4+)替代,引起八面体结构畸变而导致蓝色的产生,因此,蓝色是过渡金属离子钒(V4+)产生的原生色.  相似文献   

3.
利用地质学和宝石学方法,结合偏反光显微镜、电子探针、傅里叶红外光谱、紫外-可见吸收光谱等测试研究手段,对新疆拜城近年出产的红宝石的宝石学特征进行系统的测试研究。结果显示,该地红宝石产于云母大理岩中,属于典型大理岩型红宝石矿床。红宝石颜色呈粉红色—玫瑰红色—红色,颜色随Cr质量分数增加,逐渐浓艳,在长波紫外灯下呈强红色荧光。主要矿物包裹体为:方解石、黄铁矿、闪锌矿、硬水铝石及面纱状、针柱状包裹体。红外光谱在官能团区显示1 990、2 121、2 929cm~(-1)处的硬水铝石特征吸收峰,紫外-可见吸收光谱显示典型的Cr谱吸收特征,具有693.9nm强荧光线。Cr_2O_3质量分数为0.11%~0.62%,FeO_T、TiO_2质量分数极低,与国外著名红宝石产地进行对比,该地红宝石具有高Cr、低Fe、低Ti特点,部分样品颜色浓艳、明亮,具有"鸽血红"红宝石特征。  相似文献   

4.
近期,市场上出现一种与高品质绿松石十分相似的翠绿色玛瑙,商业名为"绿松玛瑙"。采用常规宝石学测试,傅里叶变换红外光谱仪、显微激光拉曼光谱仪、X射线荧光光谱仪及紫外-可见光分光度计,对其基本宝石学特征、化学成分、谱学特征及颜色成因等进行分析。结果表明,该种玛瑙的绿色分布不均,颜色仅存于表面,染色剂呈现由外至内扩散特点;X射线荧光光谱分析显示该玛瑙主量元素为Si,含有少量Al、Mg、Na元素及微量Mn、Fe、Cr等元素,样品表面Cr元素含量高于内部;红外吸收光谱与石英的一致,可见有机物的特征吸收峰;拉曼光谱显示α-石英和斜硅石的特征峰;紫外-可见光谱显示267 nm附近的Cr~(6+)的特征吸收带和八面体场中的Cr~(3+)离子d-d跃迁所致的吸收带。该"绿松玛瑙"样品并非商家宣称的天然玛瑙,其绿色是经含Cr染色剂染色所致,根据国家标准(GB/T 16552—2017)规定,应将其定名为玛瑙。  相似文献   

5.
巴西Minas Gerais彩色电气石的宝石矿物学特征   总被引:1,自引:1,他引:0  
利用电子探针、X射线光电子能谱仪、紫外-可见光光度计和傅里叶变换红外光谱仪对产自巴西MinasGerais地区、不同颜色的彩色电气石样品进行了宝石矿物学特征研究。电子探针测试结果显示,该电气石样品中Al2O3和Na2O的质量分数较高,FeO的质量分数相对较低,且含有一定量的MnO和Cr2O3;X射线光电子能谱分析初步证实该样品为锂电气石;结合化学成分与紫外-可见光透过光谱的分析结果认为,微量元素Fe^2+,Fe^3+,Mn^3+,Ti^4+和Cr^2+是巴西Minas Gerais彩色电气石样品致色的主要因素之一;红外吸收光谱测试结果显示,该样品在1200~1450cm。范围内存在强的B-O基团致伸缩振动带,含有BO3原子团;其在3000-3750cm。范围内具有H2O和羟基离子致双峰伸缩谱带。比较不同颜色电气石样品的红外吸收光谱发现,其光谱频带数及位置与电气石中的类质同象和化学成分有关。  相似文献   

6.
对天然无色—浅黄色方柱石样品进行电子辐照改色处理,并对部分改色后为褐色/烟紫色的样品进行了热处理,肉眼观察颜色变化情况并进行紫外-可见吸收光谱测试。结果显示,电子辐照处理可使无色—浅黄色方柱石样品变为紫色、黄色,部分样品带棕褐色调。经电子辐照处理成紫色的方柱石的紫外-可见吸收光谱在黄绿区有宽的吸收带;辐照处理成黄色方柱石的紫外-可见吸收光谱中吸收峰位置与天然方柱石基本一致,蓝紫区的吸收明显增强。笔者推测电子辐照致方柱石产生紫色的原因与天然紫色方柱石颜色的成因可能相似,而产生黄色的原因可能与O-色心有关。加热处理实验结果表明:恒温时间为2h,恒温温度在500℃以下时,辐照产生的不理想的褐色调不能被有效消除;恒温温度为600℃,恒温时间2h以上时,辐照改色的样品褪色为近无色—浅黄色;加热气氛对方柱石颜色变化的影响不大。  相似文献   

7.
最近,在北京珠宝市场上出现了大量的"金丝砗磲"。通过常规宝石学检测和紫外-可见光吸收光谱测试,对其进行了初步研究。结果表明,此种"金丝砗磲"并不是砗磲,而是一种海洋腹足纲类海螺贝经染色而成的饰品。该海螺贝呈螺旋状层状构造,可以通过其表面颜色不均、黄色部分不透明、黄色部分无荧光加以鉴别,也可以采用紫外-可见光分光光度计测试加以鉴别。  相似文献   

8.
对市场上搜集的3件危地马拉"蓝水料"翡翠成品和2件原料进行了无损测试与分析,包括常规宝石学特征、红外吸收光谱和紫外-可见吸收光谱等测试方法。对危地马拉"蓝水料"翡翠原料进行了有损测试分析,研究其岩石矿物学特征,包括岩石薄片观察、X射线粉末衍射和电子探针分析。结果表明,"蓝水料"翡翠的宝石学特征与传统翡翠一致,矿物组成以硬玉为主,含少量绿辉石,红外吸收光谱显示其主要吸收峰在1 080cm~(-1)处,紫外-可见吸收光谱可见437nm特征吸收峰。"蓝水料"翡翠的岩石矿物学和宝石学特征均符合传统翡翠的定义。  相似文献   

9.
对澳大利亚某矿区蓝宝石样品的宝石学和谱学特征进行研究,并为该矿区蓝宝石的优化处理工艺提供理论依据。采用常规宝石学仪器、傅里叶红外光谱仪,激光剥蚀等离子体质谱仪、显微紫外-可见分光光度计和激光拉曼光谱仪等对澳大利亚蓝宝石样品的宝石学特征、化学成分、红外光谱、拉曼光谱、紫外-可见光谱进行了系统研究。结果表明,澳大利亚蓝宝石样品的颜色分布不均匀,普遍发育六边形平直生长色带,其包裹体主要包括二相包裹体(CO_2和H_2O)、蓝宝石、金红石、锆石、硬水铝石、角闪石等;红外光谱中3 310 cm~(-1)处的吸收峰指示着该矿区蓝宝石生长于还原条件下,其Cr/Ga比值小于1且Fe/Ti比值大部分介于10~100,为典型岩浆岩型蓝宝石的比值;澳大利亚蓝宝石样品的颜色主要与Fe、Ti、Si、Mg等元素质量分数有关:Ti质量分数较少的区域常出现由Fe~(3+)离子的d-d电子跃迁导致的377、387、450 nm处的吸收峰;而Ti质量分数较多的区域常出现由Fe~(2+)—Ti~(4+)离子对电荷转移导致的以559 nm为中心的黄绿区的吸收带;Fe~(2+)—Fe~(3+)离子对电荷转移常常与Fe~(2+)—Ti~(4+)离子对电荷转移同时出现并导致以754 nm附近为中心的700~800 nm处的宽缓吸收带,且根据Fe~(2+)—Fe~(3+)、Fe~(2+)—Ti~(4+)离子对电荷转移的比例不同,吸收带的中心会发生偏移。  相似文献   

10.
铝硼锆钙石属于一种极为稀有的宝石品种,其宝石学特征的研究报道较少。为丰富相关宝石学数据,为类似的稀有宝石品种检测提供思路,并提高检测效率,对样品进行常规宝石学测试,并运用红外光谱、拉曼光谱、EDS能谱及光致发光光谱技术进行了测试与分析。结果表明,铝硼锆钙石折射率值超出折射仪测量范围,二色性明显,可见典型吸收光谱,紫外灯长波下惰性,紫外灯短波下呈中-强黄绿色荧光,放大可见明显刻面棱重影、裂隙、矿物及流体包裹体,密度为3.89±0.02 g/cm~3,摩氏硬度为7~8,贝壳状断口;红外光谱与拉曼光谱结果显示特征谱峰与B-O、Al-O、Ca-O、Zr-O振动有关,其中[BO_3]~(3-)和[BO_4]~(5-)并存。光致发光光谱证实电子-空穴心的存在,紫外-可见吸收光谱显示特征吸收峰与微量Ti、V、Fe叠加吸收有关;EDS能谱仪测试样品的主量元素与铝硼锆钙石化学式一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号