首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This paper presents a comparison of fire field model predictions with experiment for the case of a fire within a compartment which is vented (buoyancydriven) to the outside by a single horizontal ceiling vent. Unlike previous work, the mathematical model does not employ a mixing ratio to represent vent temperatures but allows the model to predict vent temperatures a priori. The experiment suggests that the flow through the vent produces oscillatory behaviour in vent temperatures with puffs of smoke emerging from the fire compartment. This type of flow is also predicted by the fire field model. While the numerical predictions are in good qualitative agreement with observations, they overpredict the amplitudes of the temperature oscillations within the vent and also the compartment temperatures. The discrepancies are thought to be due to three-dimensional effects not accounted for in this model as well as using standard ‘practices’ normally used by the community with regards to discretization and turbulence models. Furthermore, it is important to note that the use of the turbulence model in a transient mode, as is used here, may have a significant effect on the results. The numerical results also suggest that a linear relationship exists between the frequency of vent temperature oscillation (n) and the heat release rate ( ) of the type , similar to that observed for compartments with two horizontal vents. This relationship is predicted to occur only for heat release rates below a critical value. Furthermore, the vent discharge coefficient is found to vary in an oscillatory fashion with a mean value of 0.58. Below the critical heat release rate the mean discharge coefficient is found to be insensitive to fire size.  相似文献   

2.
The objective of this work is to propose an effective modeling to perform predictive simulations of pool fires in mechanically ventilated compartments, representative of a nuclear installation. These predictive simulations have been conducted using original boundary conditions (BCs) for the fuel mass loss rate and the ventilation mass flow rate, which depend on the surrounding environment. To validate the proposed modeling, the specific BCs were implemented in the ISIS computational fluid dynamics (CFD) tool, developed at IRSN, and three fire tests of the PRISME-Door experimental campaign were simulated. They involved a hydrogenated tetrapropylene (HTP) pool fire in a confined room linked to another one by a doorway; the two rooms being connected to a mechanical ventilation system. The three fire scenarios offer different pool fire areas (0.4 and 1 m2) and air change rates (1.5 and 4.7 h−1). For the one square meter pool fire test, the study presents, in detail, the effects of the boundary conditions modeling. The influence of the ventilation and fuel BCs is analyzed using either fixed value, or variable, function of the surrounding environment, determined by a Bernoulli formulation for the ventilation mass flow rate and by the Peatross and Beyler correlation for the fuel mass loss rate. The results indicate that a full coupling between these two BCs is crucial to correctly predict the main parameters of a fire scenario as fire duration, temperature and oxygen fields, over- and under-pressure peaks in the fire compartment. Variable BCs for ventilation and fuel rates were afterward both used to predictively simulate the fire tests with a pool surface area of 0.4 m2. The predicted results are in good agreement with measurements signifying that the model allows to catch the main patterns characteristic of an under-ventilated fire.  相似文献   

3.
The main objective of the present work is an investigation of the accuracy and the reliability of numerical predictions of ceiling jets induced by fire plumes, aiming at practical applications to fire-safety planning. Ceiling jet phenomena are studied numerically using the standard k-ɛ model of turbulence. Computed results are compared with basic experimental data. Of particular interest is the dependence of (a) the computational mesh system, (b) the incompressible or compressible flow assumptions, and (c) initial values of k and ɛ at the inflow on the ceiling jet solutions.  相似文献   

4.
《Fire Safety Journal》1997,29(1):1-25
This paper presents a comparison of the results from a computational fluid dynamics (CFD) model and a two-zone model against a comprehensive set of data obtained from one flashover fire experiment. The experimental results were obtained from a full-scale prototype apartment building under flashover conditions. Three polyurethane mattresses were used as fuel. The CFAST two-zone model (version 2.0) was also used to predict results for this flashover fire test. The mass release rate, gas temperature, radiation heat flux and gas compositions (O2, CO2 and CO) were measured. A CFD program, CESARE-CFD Fire Model, has been developed and was used also to predict results for polyurethane-slab fire. A simple flame spread model was incorporated into the CFD program to predict the mass release rate and heat release rate during the fire instead of providing it as an input as is required for most zone and CFD models. It was found that the CFD model provided reasonable predictions of the magnitude and the trends for the temperatures in the burn room and the species concentrations, but over-predicted the temperatures in the adjacent enclosures. From a life safety perspective, the CFD model conservatively predicted the concentrations of CO and CO2. The predicted temperatures from the CFAST fire model agreed well with the experimental results in most areas. However, the CFAST model under predicted the temperature in the lower layer of the room of fire origin and the concentration of CO in most areas.  相似文献   

5.
The mathematical modeling of fire growth and smoke movement in any enclosure is a formidable task. Two types of deterministic models are in vogue, zone models and field models (popularly known as CFD technique). CFAST is a popular zone model used for modeling of fires in enclosures. Likewise, CFX is a general purpose CFD code used for various purposes including modeling of fires. In the present paper, a tunnel of length 150 m having a rectangular cross-section of 80 m2 has been considered for analyzing the temperature and velocity profiles generated by fire, placed at a distance of 20 m from one end of portal, by both CFAST and CFX. The simulation by CFAST has been carried out by dividing the tunnel into 1, 2, 5, 8, 10, 12 and 15 compartments of equal size, where these compartments are joined by openings or vents having same cross-section as that of the tunnel. In case of tunnel divided into 15 compartments the fire source position lies at the position of vent; CFAST predicted very high temperatures. The simulations have also been carried out by dividing tunnel into unequal sized compartments such that position of fire was at the center of the compartment. It was found that for accuracy of results, location of fire source inside compartment is an important factor. Computational difficulty was experienced when tunnel was divided into more than 15 compartments. In this paper, a comparative study of temperatures predicted by CFAST and CFX has been done. The CFX and CFAST predictions show that smoke temperature changes with a pattern roughly similar to that of heat release rate. The temperature profiles at selected positions cannot be predicted by CFAST unlike CFX. The detailed features like flame tilt, flow field can only be observed from CFX predictions.  相似文献   

6.
Critical temperature is defined as the temperature at which failure is expected to occur in a structural steel member given a uniform temperature distribution and load level. Determination of the critical temperature is a simple but efficient way for structural fire design. This paper proposed a new model which incorporated the buckling, load levels and non-dimensional slenderness to calculate the critical temperature of steel member under fire based on the simple calculation models in Eurocode 3. To advance the application of this new model, design charts for determining the critical temperatures were developed. The design charts showed that the critical temperature decreases with increasing load level, and increases as the buckling curve varies from “a0” to “d”. It is also recommended to use higher grade steel in both normal and fire situations. The accuracy of this model was ascertained by comparing with the test results in available literature. The new model gave an average prediction-to-test ratio of 0.980 with a standard deviation of 0.077, indicating conservative and less scattered predictions. The percentage of over-prediction (i.e., prediction-to-test ratio >1.0) was less than 5.8% when the nominal yield strength of steel rather than its test strength was used for predictions. In general, reasonable agreements were obtained between the test results and the predictions.  相似文献   

7.
A field model code, JASMINE, has been adopted to calculate ceiling jet flows caused by plumes from unsteady fire sources in a large corridor. The idealized fast- and medium-fire energy release rates, obeying thet 2 law for fire growth, were used. The effects of vents were studied by simulating three different configurations: a centrally located vent—that is, a vent directly above the fire source; an eccentrically located vent; and no vent. The results were compared with recent large-scale experiments conducted at the Swedish National Testing and Research Institute (SP) and with results from the computer program LAVENT. Some calculated sprinkler temperatures with three different RTI values are also presented.The present JASMINE simulations agree reasonably well with measured ceiling temperatures and velocities in large-scale tests. In general, the calculated ceiling jet temperatures are slightly overestimated and the velocities slightly underestimated. Also, the layer thicknesses calculated by JASMINE are somewhat thinner than those measured. The ceiling jet theory and present LAVENT results predict very thin layer thicknesses. However, these theories are only valid when wall effects are eliminated. From the present study it can be concluded that CFD models are generally more accurate when used to predict confined and unconfined flows.  相似文献   

8.
A quasi-steady-state model was developed to predict the effectiveness of a water mist system for extinguishing fuel spray and pool fires. The model was developed for obstructed fires where extinguishment primarily occurs as a result of a reduction in oxygen concentration due to the consumption of oxygen by the fire and due to dilution of the oxygen with water vapor. Interactions between the mist and the flame are neglected resulting in limiting case predictions. The model is based on conservation of energy and requires the following input parameters: fire size, compartment geometry, vent area, and water flow rate. The steady-state temperatures and oxygen concentrations predicted by the model can be used to determine the smallest fire that can be extinguished. The predictions made by the model compared favorably to the results of three full-scale test series conducted for the US Coast Guard. These tests were conducted in shipboard machinery spaces with compartment volumes ranging from 100 to 500 m3 with a wide range of ventilation rates and openings. The model was able to accurately predict the compartment temperatures during the tests where steady-state conditions were produced. The model was also able to accurately predict the extinguishment times for a wide range of fire sizes and was used to identify the smallest fire that could be extinguished for a given set of conditions.  相似文献   

9.
Two models that can be used to predict full-scale heat release rates of polyurethane foam slabs were evaluated in this study. Predictions were compared with results of furniture calorimeter tests of 10 cm thick polyurethane foam specimens which were ignited in the centre or on the edge. Furniture calorimeter results indicated that peak heat release rates and fire growth rates were higher during centre ignition tests than edge ignition tests. For both situations, the growth phase of the heat release rate curves measured in the full-scale tests was successfully predicted using t 2 design fires; the choice of a specific t 2 fire depended on the surface area of the specimen and ignition location. A model originally developed during the European Combustion Behaviour of Upholstered Furniture (CBUF) project was also evaluated using heat release rate data from cone calorimeter tests and flame area burning rates measured using infrared video records of the furniture calorimeter tests. This model was able to successfully predict the initial growth phase of the fires and predictions of peak heat release rates were within 17% of measured values. The model had less success in predicting heat release rates later in the growth phase and during the decay phase of the fires, and did not appear to capture all of the physics of the full-scale tests, in particular foam melting and subsequent liquid pool burning. As the model did show promise, future work is planned to address these shortcomings and to develop improved flame spread models for polyurethane foam.  相似文献   

10.
There is an increasing desire to use more engineered timber products in buildings, due to the perceived aesthetics of timber and desire for more sustainable architecture. However, there are concerns about fire performance of these products especially in taller buildings. This has led to renewed research to understand the behaviour of timber surfaces in compartments exposed to fire. This paper describes a two-zone calculation model for determining the fire environment within a compartment constructed from timber products where varying amounts of timber are exposed on the walls and ceiling. A set of eight full-scale compartment experiments previously reported in the literature are used to assess the capability of the model. The fire load energy density in the experiments ranged from 92 MJ/m2 to 366 MJ/m2 comprising either wood cribs or bedroom furniture with the largest compartment having dimensions 4.5?×?3.5?×?2.5 m high with an opening 1.069 m wide?×?2.0 m high. The experiments were ventilation-controlled. It is shown that the model can be used to provide conservative predictions of the fire temperatures for compartments with timber exposed on the walls and/or ceiling as part of an engineering analysis. There are several limitations that are discussed including the need to consider the debonding of layers in the case of cross-laminated timber. It is recommended that further benchmarking of the model be done for different ventilation conditions and with engineered timber products where debonding does not occur. This will test the model under a wider range of conditions than examined in this paper.  相似文献   

11.
In this study, the Fire Dynamics Simulator (FDS), a computational fluid dynamics (CFD) model developed by National Institute of Standards and Technology (NIST) is used to simulate fire tests conducted at the National Research Council of Canada (CNRC). These tests were conducted in an experimental 10-storey tower to generate realistic smoke movement data. A full size FDS model of the tower was developed to predict smoke movement from fires that originate on the second floor. Three propane fire tests were modelled, and predictions of O2, CO2 concentrations and temperature on each floor are compared with the experimental data. This paper provides details of the tests, and the numerical modelling, and discusses the comparisons between the model results and the experiments. The 10-storey experimental tower was designed to simulate the centre core of high-rise buildings. It includes a compartment and corridor on each floor, a stair shaft, elevator shaft and service shafts. Three propane fire tests were conducted in 2006 and 2007 to study smoke movement through the stair shaft to the upper floors of the building. The fire was set in the compartment of the 2nd floor. Thermocouples and gas analyzers were placed on each floor to measure temperature and O2, CO2 and CO concentrations. Comparisons in the fire compartment and floor of fire show that the FDS model gives a good prediction of temperature and O2 and CO2 concentrations. In the stair shaft and upper floors there are some small differences which are due to the effect of heat transfer to the stairs that was not considered in the model. Overall the study demonstrates that FDS is capable of modelling fire development and smoke movement in a high rise building for well ventilated fires.  相似文献   

12.
This paper presents a model for estimating temperatures in pre-flashover fires where the fire enclosure boundaries are assumed to have lumped heat capacity. That is, thermal inertia is concentrated to one layer with uniform temperature and insulating materials are considered purely by their heat transfer resistance. The model yields a good understanding of the heat balance in a fire enclosure and was used to predict temperatures in insulated and non-insulated steel-bounded enclosures. Comparisons were made with full scale experiments and with other predictive methods, including CFD modeling with FDS and the so called MQH relationship. Input parameter values to the model were then taken from well-known literature and the heat release rates were provided from the experiments. The fire temperature predictions of the model matched very well with experimental data. So did the FDS predictions while the original MQH relationship gave unrealistic results for the problems studied. Major benefits of using the model in comparison with CFD modeling are its readiness and simplicity as well as the negligible computation times needed. An Excel application of the presented pre-flashover fire model is available on request from the author.  相似文献   

13.
In fires in large compartments like enclosed car parks, airport terminals and industrial halls, the uniform distribution of gas temperature of post-flashover stages are unlikely to occur; in these cases, the thermal actions of a localised fire must be taken into account. In order to design steel structures for a localised fire, very detailed data concerning the development of temperatures in steel is required. EN 1991-1-2 presents a simplified model for calculating the temperatures in ceiling slabs and in the beams that may support such slabs; however, no simplified calculation model for the heat transfer in vertical elements, such as columns, is yet available. There is a need for more experimental data on real scale structures exposed to localised fires. A research project on the evaluation of temperatures in steel columns exposed to localised fires was carried out at the University of Coimbra. Full-scale natural fire tests were used to test columns, instead of conducting the usual furnace tests. This paper presents and discusses the results of the experimental tests on unprotected hollow steel columns exposed to localised fires, each of them simulating a distinct fire scenario according to different fire loads, positions and ventilation conditions. During the fire tests, real measurements showed flame heights and burning times different to those preliminarily estimated: flame heights had been conservatively predicted; while, the duration of the burning had been significantly underestimated.  相似文献   

14.
An experimental programme of eight elevated-temperature tests on composite steel top-and-seat-and-web (TSW) angle joints was carried out to investigate the behaviour of this form of joints under fire conditions. It is found that the inherent strength and stiffness of composite joints can significantly improve the structural behaviour of steel framed structures under fire conditions. However, experimental works on composite steel TSW angle joints under fire conditions have not been published yet. To develop a versatile model to predict the joint moment-rotation characteristics, the authors have developed a component-based mechanical model for this form of joints. The objectives of this study are to ascertain the moment-rotation characteristic for this form of joint at elevated temperatures and to validate the authors’ mechanical model. The effects of some parameters on the overall joint behaviour, such as elevated temperatures, longitudinal shear strength of RC slabs, steel beam depth and bolt behaviour were observed and investigated. The mechanical model predictions are compared with the test results and showed good agreement.  相似文献   

15.
This paper discusses a procedure for the use of fire modelling in the performance-based design environment to quantify design fires for commercial buildings. This procedure includes building surveys, medium-and full-scale experiments and computer modelling. In this study, a survey of commercial premises was conducted to determine fire loads and types of combustibles present in these buildings. Statistical data from the literature were analysed to determine the frequency of fires, ignition sources, and locations relevant to these premises. Based on the results of the survey and the statistical analyses a number of fuel packages were designed that represent fire loads and combustible materials in commercial buildings. The fuel packages were used to perform medium- and full-scale, post-flashover fire tests to collect data on heat release rates, compartment temperatures and production and concentration of toxic gases. Based on the experimental results, input data files for the computational model, Fire Dynamics Simulator (FDS), were developed to simulate the burning characteristics of the fuel packages observed in the experiments. Comparative analysis between FDS model predictions and experimental data of HRR, carbon monoxide (CO), and carbon dioxide (CO2), indicated that FDS model was able to predict the HRR, temperature profile in the burn room, and the total production of CO and CO2 for medium- and large-scale experiments as well as real size stores.  相似文献   

16.
This paper describes an artificial neural networking (ANN) model developed to predict the behaviour of semi-rigid composite joints at elevated temperature. Three different semi-rigid composite joints were selected, two flexible end-plates and one flush end-plate. Seventeen different parameters were selected as input parameters representing the geometrical and mechanical properties of the joints as well as the joint’s temperature and the applied loading, and used to model the rotational capacity of the joints with increasing temperatures. Data from experimental fire tests were used for training and testing the ANN model. Results from nine experimental fire tests were evaluated with a total of 280 experimental cases. The results showed that the R2 value for the training and testing sets were 0.998 and 0.97, respectively. This indicates that results from the ANN model compared well with the experimental results demonstrating the capability of the ANN simulation techniques in predicting the behaviour of semi-rigid composite joints in fire. The described model can be modified to study other important parameters that can have considerable effect on the behaviour of joints at elevated temperatures such as temperature gradient, axial restraints, etc.  相似文献   

17.
NIST’s Fire Dynamics Simulator (FDS) is a powerful tool for simulating the gas phase fire environment of scenarios involving realistic geometries. If the fire engineer is interested in simulating fire spread processes, FDS provides possible tools involving simulation of the decomposition of the condensed phase: gas burners and simplified pyrolysis models. Continuing to develop understanding of the capability and proper use of FDS related to fire spread will provide the practicing fire engineer with valuable information. In this work three simulations are conducted to evaluate FDS V.4’s capabilities for predicting upward flame spread. The FDS predictions are compared with empirical correlations and experimental data for upward flame spread on a 5 m PMMA panel. A simplified flame spread model is also applied to assess the FDS simulation results. Capabilities and limitations of FDS V.4 for upward flame spread predictions are addressed, and recommendations for improvements of FDS and practical use of FDS for fire spread are presented.  相似文献   

18.
The Swedish Fire Research Board and the U.S. Federal Emergency Management Agency are sponsoring a project to further the understanding of the basic mechanisms involved, as well as to support the development of standards for and to seek ways of improving the performance of portable fire suppression systems used by fire departments.This paper describes a physically based computer model developed to simulate one aspect of the problem: the manual suppression of postflashover fires. This includes: (1) an overview of the physical basis behind the model; (2) a comparison of model predictions with available experimental data, and (3) an analysis of fire suppression effectiveness using the model.The analysis concludes that, when direct access and extinguishment of the burning fuel is not possible, improved fire control occurs with water sprays having a Rosin-Rammler distribution of droplet sizes with volume-median-drop diameters in the 0.15 to 0.35 mm range. This agrees with available experimental data. It is also shown that fire fighting venting and standoff distance requirements may lead to more severe fires requiring more water for control; although venting and water spray induced air/gas flow also serve to channel hot steam and gases away from the fire fighter adding to his safety. The analysis also shows that allowing higher gas and surface temperatures at fire control through improved fire fighter protective clothing and equipment design reduces water flow rate requirements. Additional experimental work is recommended before all these conclusions are considered definitive. Reference: L. M. Pietrzak and G. A. Johanson, Directions for Improving Manual Fire Suppression Using a Physically Based Computer Simulation,Fire Technology, Vol. 22, No. 3, August, 1986, p. 184.  相似文献   

19.
Twelve tests were conducted to study the distribution of smoke temperature along the tunnel ceiling in the one-dimensional spreading phase, two tests in a large-scale tunnel and the other ten in full scale vehicular tunnels. The fire size and the height above the floor, the tunnel section geometry and longitudinal ventilation velocity varied in these tests. Experimental results showed that when the fire size was larger, the smoke temperature below the ceiling was higher, but it decayed faster while traveling down the tunnel. The longitudinal ventilation velocity seemed to take much influence on the smoke temperature decay speed downstream. A “barrier effect” was shown for the smoke temperature distribution of the upstream back layering. The smoke temperatures measured were higher upstream than downstream before the “barrier”, and were much lower and decreased faster along the tunnel ceiling after the “barrier”. The temperature and the traveling velocity of the upstream smoke flow decreased largely when the longitudinal ventilation velocity increased a bit. The dimensionless excess smoke temperature distributions along the tunnel ceiling in all tests fell into good exponential decay. But the decay speed along the tunnel seemed to be much larger in the large-scale tunnel than that in full-scale tunnels. The measured data on ceiling jet temperature decay along the tunnel was compared with predictions of Delichatsios's model, a model built based on small-scale tests, with hydraulic diameter introduced. Results showed that Delichatsisos’ model over estimated the decay speed of ceiling jet temperature for the downstream flow. However, good agreement was achieved between the measured data and the model predictions for the upstream back layering. All the experimental data presented in this paper can be further applied for verification of numerical models, bench-scale results and building new models on ceiling jet temperature distribution.  相似文献   

20.
《Fire Safety Journal》2001,36(7):661-677
Numerical predictions produced by the SMARTFIRE fire field model are compared with experimental data. The predictions consist of gas temperatures at several locations within the compartment over a 60 min period. The test fire, produced by a burning wood crib attained a maximum heat release rate of approximately 11 MW. The fire is intended to represent a non-spreading fire (i.e. single fuel source) in a moderately sized ventilated room. The experimental data formed part of the CIB Round Robin test series. Two simulations are produced, one involving a relatively coarse mesh and the other with a finer mesh. While the SMARTFIRE simulations made use of a simple volumetric heat release rate model, both simulations were found capable of reproducing the overall qualitative results. Both simulations tended to over-predict the measured temperatures. However, the finer mesh simulation was better able to reproduce the qualitative features of the experimental data. The maximum recorded experimental temperature (1214°C after 39 min) was over-predicted in the fine mesh simulation by 12%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号