首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The substantia nigra is innervated by massive inhibitory GABAergic projections from the striatum and globus pallidus, deafferentation of which is supposed to lead to anterograde trans-synaptic degeneration of the nigral neurons. An immunohistochemical method was used to examine the induction of 72,000 mol. wt heat shock protein in the substantia nigra following cerebral hemitransection or transient middle cerebral artery occlusion. At three and four days post-transection, strong immunoreactivity for 72,000 mol. wt heat shock protein was found in the ipsilateral substantia nigra pars reticulata. Light microscopic observation revealed a number of pars reticulata neurons showing strong immunoreactivity for 72,000 mol. wt heat shock protein in their perikarya and proximal processes. In addition, Golgi-like stained neurons with dystrophic features were occasionally observed in the ipsilateral substantia nigra pars reticulata. The immunoreactivity for 72,000 mol. wt heat shock protein in the ipsilateral pars reticulata gradually declined and almost disappeared by 15 days after transection. No apparent induction of 72,000 mol. wt heat shock protein was found in the substantia nigra pars compacta throughout the time period examined. Massive striatal ischemic injury produced by transient middle cerebral artery occlusion also induced expression of 72,000 mol. wt heat shock protein in the pars reticulata neurons three and four days postoperatively. These findings suggest that deafferentation of the striatal or striatopallidal inputs per se is a harmful stress for the substantia nigra pars reticulata neurons, inducing 72,000 mol. wt heat shock protein synthesis. The present data may contribute to our understanding of the molecular basis of the pathomechanism of the transneuronal regression of substantia nigra pars reticulata neurons, which may occur after removal of inhibitory GABAergic inputs.  相似文献   

2.
We studied sequential changes in electrophysiological profiles of the ipsilateral substantia nigra neurons in an in vitro slice preparation obtained from the middle cerebral artery-occluded rats. Histological examination revealed marked atrophy and neurodegeneration in the ipsilateral substantia nigra pars reticulata at 14 days after middle cerebral artery occlusion. Compared with the control group, there was no significant change in electrical membrane properties and synaptic responses of substantia nigra pars reticulata neurons examined at one to two weeks after middle cerebral artery occlusion. On the other hand, there was a significant increase in the input resistance and spontaneous firing rate of substantia nigra pars compacta neurons at 13-16 days after middle cerebral artery occlusion. Furthermore, inhibitory postsynaptic potentials evoked by stimulation of the subthalamus in substantia nigra pars compacta neurons was suppressed at five to eight days after middle cerebral artery occlusion. At the same time excitatory postsynaptic potentials evoked by the subthalamic stimulation was increased. Bath application of bicuculline methiodide (50 microM), a GABA(A) receptor antagonist, significantly increased the firing rate of substantia nigra pars compacta neurons from intact rats. These results strongly suggest that changes in electrophysiological responses observed in substantia nigra pars compacta neurons is caused by degeneration of GABAergic afferents from the substantia nigra pars reticulata following middle cerebral artery occlusion. While previous studies indirectly suggested that hyperexcitation due to deafferentation from the neostriatum may be a major underlying mechanism in delayed degeneration of substantia nigra pars reticulata neurons after middle cerebral artery occlusion, the present electrophysiological experiments provide evidence of hyperexcitation in substantia nigra pars compacta neurons but not in pars reticulata neurons at the chronic phase of striatal infarction.  相似文献   

3.
Susceptibility to develop Parkinson's disease has been linked to abnormalities of P450 enzyme function. Multiple P450 enzymes are expressed in brain but the relationship of these to Parkinson's disease is unknown. We have investigated the expression of P450 enzymes in the rat substantia nigra and their co-localization in tyrosine hydroxylase-positive neurons and astrocytes. Immunohistochemistry was performed using anti-peptide antisera against the following P450 enzymes: CYP1A1, CYP1A2, CYP2B1/2, CYP2C12, CYP2C13/2C6, CYP2D1, CYP2D4, CYP2E1, CYP3A1, CYP3A2 and NADPH-P450 oxidoreductase. Immunoreactivity in nigral cells was found only for CYP2E1 and CYP2C13/2C6. CYP2E1 immunoreactivity was localized to many midbrain nuclei including the substantia nigra pars compacta but not the substantia nigra pars reticulata while immunoreactivity to CYP2C13/2C6 was found in the substantia nigra pars compacta, substantia nigra pars reticulata and many other midbrain nuclei. Sections of rat midbrain double labelled for either CYP2E1 or CYP2C13/2C6 and tyrosine hydroxylase or glial fibrillary acidic protein were examined for co-localization by confocal laser scanning microscopy. CYP2E1 and CYP2C13/2C6 immunoreactivity was found in tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta but not in glial cells. CYP2C13/2C6, but not CYP2E1, was also found in non-glial, non-tyrosine hydroxylase-expressing cells in the substantia nigra pars reticulata. Isoniazid induction increased CYP2E1 fluorescence signal intensity from nigral dopaminergic neurons. At least two P450 enzymes are found in nigral dopamine containing cells and one, namely CYP2E1, is selectively localized to this cell population. CYP2E1 is a potent generator of free radicals which may contribute to nigral pathology in Parkinson's disease. The expression of CYP2E1 in dopaminergic neurons in substantia nigra raises the possibility of a causal association with Parkinson's disease.  相似文献   

4.
Metabotropic glutamate receptors, which are linked via G-proteins to second messenger systems, have been implicated in the physiological regulation of dopaminergic neurons of the substantia nigra pars compacta as well as in neurodegeneration. Of the eight known metabotropic glutamate receptors, metabotropic glutamate receptor 1 is the most abundant subtype in the substantia nigra pars compacta. Metabotropic glutamate receptor 1 is alternatively spliced at the carboxy terminal region to yield five variants: 1a, 1b, 1c, 1d and a form recently identified in human brain, 1g. We used an antibody recognizing metabotropic glutamate receptor 1, and another recognizing the splice form la only, to study the localization of these receptors in dopaminergic neurons identified by the presence of tyrosine hydroxylase. Metabotropic glutamate receptor immunoreactivity was present within the somata, axons, and dendrites of substantia nigra pars compacta neurons. The 1a splice form specific antibody, however, did not label these cells, suggesting that they express a metabotropic glutamate receptor 1 splice form different from 1a. In situ hybridization with splice form-specific oligonucleotide probes was used to determine which of the other known metabotropic glutamate receptor 1 splice forms might be present in the substantia nigra pars compacta. Each probe produced a very distinct labelling pattern in the rat brain with the exception of the 1g specific probe which produced only background signal. Substantia nigra pars compacta neurons were most intensely labelled by the metabotropic glutamate receptor 1d splice form specific probe. Metabotropic glutamate receptor 1a was expressed weakly whereas there was no detectable 1b, c, or g signal in the substantia nigra pars compacta. These data demonstrate that metabotropic glutamate receptor 1 protein is present within the perikarya and processes of dopaminergic neurons in the substantia nigra pars compacta. The majority of this protein is not the 1a splice form, which is abundant in other brain regions, and may be the 1d isoform. Since splicing alters the carboxy terminus of the receptor, it is likely to affect the interaction of the receptor with intracellular signalling systems.  相似文献   

5.
In the human brain, receptor binding sites for angiotensin are found in the striatum and in the substantia nigra pars compacta overlying dopamine-containing cell bodies. In contrast, angiotensin-converting enzyme occurs in the substantia nigra pars reticulata and is enriched in the striosomes of the striatum. In this study, using quantitative in vitro autoradiography, we demonstrate decreased angiotensin receptor binding in the substantia nigra and striatum of postmortem brains from patients with Parkinson's disease. In the same brains the density of binding to angiotensin-converting enzyme shows no consistent change. We propose, from these results, that angiotensin receptors in the striatum are located presynaptically on dopaminergic terminals projecting from the substantia nigra. In contrast, the results support previous studies in rats demonstrating that angiotensin-converting enzyme is associated with striatal neurons projecting to the substantia nigra pars reticulata. These findings raise the possibility that newly emerging drugs that interact with the angiotensin system, particularly converting enzyme inhibitors and new nonpeptide angiotensin receptor blockers, may modulate the brain dopamine system.  相似文献   

6.
In Parkinson's disease and other Lewy-body-associated disorders, the substantia nigra pars compacta undergoes degeneration, but the mechanism of cell death has not been previously described. The substantia nigra of normal and Alzheimer's disease cases were compared with substantia nigra from patients with Lewy-body-associated disorders (Parkinson's disease, concomitant Alzheimer's/Parkinson's disease, and diffuse Lewy body disease) using in situ end labeling to detect fragmented DNA. In situ end-labeled neurons demonstrated changes resembling apoptosis: nuclear condensation, chromatin fragmentation, and formation of apoptotic-like bodies. Ultrastructural analysis confirmed nuclear condensation and formation of apoptotic-like bodies. Apoptotic-like changes were seen in the substantia nigra of both normal and diseased cases; concomitant Alzheimer's/Parkinson's disease and diffuse Lewy body disease cases had significantly higher amounts of apoptotic-like changes than normal controls or Alzheimer patients. The finding of neuronal death by apoptosis may have relevance for the development of new treatment strategies for Parkinson's disease and related disorders.  相似文献   

7.
The distribution of the vesicular monoamine transporter was investigated post mortem in the human ventral mesencephalon of control subjects (n = 7) and patients with Parkinson's disease (n = 4) using tritiated dihydrotetrabenzine binding and autoradiography. Tritiated dihydrotetrabenazine binding was characterized by a single class of sites with a Kd of 7 nM and a Bmax of 180 fmol/mg of protein in the substantia nigra. Tritiated dihydrotetrabenazine binding sites were heterogeneously distributed in the mesencephalon of control subjects: the density of tritiated dihydrotetrabenazine binding sites was high in the substantia nigra pars compacta, locus coeruleus and nucleus raphe dorsalis, moderate in the ventral tegmental area and low in the substantia nigra pars reticulata and catecholaminergic cell group A8. Within the substantia nigra, a zone with maximal density of tritiated dihydrotetrabenazine binding, two times higher than the mean estimate for the whole substantia nigra pars compacta, was detected in the medial part of the structure. The anatomical organization of the human ventral mesencephalon was analyzed on adjacent sections stained for acetylcholinesterase histochemistry and tyrosine hydroxylase immunohistochemistry. Tritiated dihydrotetrabenazine binding displayed the same characteristic regional pattern of distribution as that observed with tyrosine hydroxylase immunohistochemistry except in the nucleus raphe dorsalis, where no tyrosine hydroxylase immunoreactivity was detected. In parkinsonian brains, the level of tritiated dihydrotetrabenazine binding was dramatically decreased in all regions of the ventral mesencephalon analyzed except in the substantia nigra pars reticulata. In the substantia nigra pars compacta, the reduction was by 55% for the whole structure and by 65% in its medial zone, where binding site density was maximal. In most nigral subsectors analyzed, the decrease in density of tritiated dihydrotetrabenazine binding sites reached the level expected given the loss of tyrosine hydroxylase-positive cells observed. By contrast, the ratio of [3H]dihydrotetrabenazine binding to the number of tyrosine hydroxylase positive neurons was significantly increased in the zone of high [3H]dihydrotetrabenazine binding sites. This relative sparing of tritiated dihydrotetrabenazine binding sites may be due either to the contribution of other monoaminergic neurons such as serotoninergic neurons or more likely to hyperactivity of the still surviving dopaminergic neurons.  相似文献   

8.
9.
It has been established that hippocampus, enthorhinal cortex, amygdala and substantia nigra (pars reticulata) lesions before head injury lead to a decrease of kainic acid-induced behavioral and electrographic seizure expressions. It can be concluded that after head injury the activation of limbic structures excitability due to excitation of "inputs" to these formations takes place. The obtained data indicate the significant role of nucleus caudatus in activation of posttraumatic brain excitatory mechanisms.  相似文献   

10.
Rats in which ascending dopamine-containing neurons have been unilaterally destroyed by injections of 6-hydroxydopamine are known to rotate after being injected with apomorphine or L-dopa. The rotation is markedly reduced by either (i) ipsilateral electrocoagulations of the caudate-putamen or internal capsule or (ii) ipsilateral coronal knife cuts immediately rostral to the substantia nigra. Neostriatal efferent fibers, in particular the strionigral projection, appear to be required for the expression of this dopamine-dependent behavior.  相似文献   

11.
The effect of transitory blockage of substantia nigra pars compacta glutamatergic inputs by intracranial injections of kynurenic acid were evaluated in two monkey treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The MPTP protocol was designed to mimic the gradual evolution of human Parkinson's disease. No effects were observed before MPTP treatment or in the first stage of treatment. Once clinical signs appeared, however, motor abnormalities were significantly aggravated by blockage of these inputs (P < 0.001). Conversely, after full Parkinsonism was established, blockage no longer had any behavioural effect. These results confirm the postulated compensatory role of the glutamatergic pathways feeding the substantia nigra pars compacta. This added insight into the physiopathology of the basal ganglia, when compared with previous data on the presymptomatic revelation of experimental Parkinsonism, should help elucidation of the time pattern of evolution of Parkinson's disease.  相似文献   

12.
Following pulse labeling with [3H]arachidonic acid ([3H]AA), its incorporation pattern in brain reflects regional changes in neurotransmitter signal transduction using phospholipase A2, that is, functional activity. In a rat model of Parkinson's disease, unilateral 6-hydroxydopamine lesion in the substantia nigra, [3H]AA acid incorporation from blood was increased in cerebral cortex, caudate putamen, globus pallidus, entopeduncular nucleus, subthalamic nucleus and substantia nigra pars reticulata ipsilateral to the lesion. This increased [3H]AA incorporation likely reflects disinhibition of basal ganglia and cortical circuits secondary to absent inhibitory nigrostriatal dopaminergic input.  相似文献   

13.
The substantia nigra pars reticulata (SNpr) is a critical site for the control of epileptic seizures. Potentiation of the inhibitory GABAergic input from the striatum to the SNpr suppresses primary or secondary generalized seizures in the rat. The purpose of this study was to examine the possible involvement of the excitatory glutamatergic input from the subthalamic nucleus to the SNpr in the control of both the electroencephalographic and the motor components of amygdala-kindled seizures in the rat. Microinjections of either an N-methyl-D-aspartate (NMDA) antagonist in the substantia nigra or a GABAA agonist in the subthalamic nucleus, significantly reduced motor seizures but did not modified the afterdischarges. These results provide evidence for the involvement of the subthalamo-nigral projection in the modulation and the propagation of the motor components of amygdala-kindled seizures.  相似文献   

14.
15.
Using a specific antiserum recently raised against [D-Ala2]deltorphin I (DADTI: Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2), a highly selective ligand for delta-opioid receptors, we have previously demonstrated the occurrence of positive immunostaining in several structures of mouse brain. We describe here the neuroanatomical distribution patterns of DADTI-immunoreactive neuronal bodies, axons, and tanycytes in rat brain. Positive neuronal somata were localized mainly in the ventral mesencephalon, including the ventral tegmental area and the pars compacta of the substantia nigra. A minor population of positive somata was found in the pars reticulata and pars lateralis of the substantia nigra, raphe nuclei, supramammillary nucleus, and retrorubral reticular nucleus. All these regions, except for the supramammillary nucleus, contain dopamine cell bodies. Intensely stained positive nerve fibers could be traced along the medial forebrain bundle. Dense positive terminals were seen in the neostriatum, nucleus accumbens shell, olfactory tubercle, septal areas, cingulate, and medial prefrontal cortex. Double-immunostaining study revealed that, in the substantia nigra, almost all (97.8%) DADTI-positive neurons colocalized with tyrosine hydroxylase (TH), and the doubly stained cells occupied about one-third (29.1%) of the total population of TH-positive neurons. Only a few DADTI/TH-positive cells also stained for 28-kDa calbindin D, although many neurons double-stained for 28-kDa calbindin D and TH. In contrast, the supramammillary nucleus contained a number of DADTI-positive cells, which nearly always stained positively for 28-kDa calbindin D but did not stain for TH. The association of DADTI-like immunoreactivity with certain dopaminergic pathways seems of particular interest. A small population of DADTI-immunostained tanycytes was present in the ventral part of the third ventricle wall.  相似文献   

16.
Previous studies have shown that application of nicotinic agonists in the substantia nigra pars compacta increases the firing rate of dopaminergic neurons. We have used intracellular recordings to show that the response of these neurons to nicotine is postsynaptic, since it persists in the presence of low-calcium buffer containing tetrodotoxin. Burst firing in the presence of nicotine was not observed. The presence of postsynaptic nicotinic receptors was confirmed by immunohistochemical localization of the alpha4 nicotinic receptor subunit on dendrites in the substantia nigra pars compacta. The majority of tyrosine hydroxylase-immunopositive neurons in the substantia nigra pars compacta were also immunopositive for the alpha4 subunit. Immunohistochemical localization of the alpha4 and beta2 subunits in adjacent brain sections produced similar patterns of staining. Electron micrographs clearly indicated the presence of alpha4 subunit at postsynaptic densities. The predominant role of nicotinic receptors in the central nervous system has been suggested to be the presynaptic modulation of neurotransmitter release [McGehee D. S. and Role L. W. (1995) A. Rev. Physiol. 57, 521-546]. Although several postsynaptic nicotinic responses have also been reported in the literature, it is unclear as to whether the postsynaptic nicotinic receptors mediating responses to exogenously applied agonists are involved in synaptic transmission. From our electrophysiological and immunohistochemical results, we conclude that alpha4-containing nicotinic receptors are found at synapses on dopaminergic neurons. These synapses are similar to the cholinergic synapses described at these neurons, suggesting that nicotinic receptors are important in modulating the excitability of dopaminergic neurons by direct synaptic transmission.  相似文献   

17.
The basal ganglia have been implicated in a number of important motor functions, in particular in the initiation of motor responses. According to the current model of basal ganglia functions, motor initiation is supposed to be associated with an inhibition of basal ganglia output structures (substantia nigra pars reticulata/entopeduncular nucleus) which, in turn, might be brought about by corresponding striatal activity changes conveyed via direct and indirect intrinsic pathways to the substantia nigra pars reticulata and the entopeduncular nucleus. Rodent studies using neuropharmacological manipulations of basal ganglia transmitter systems by neurotoxins or drugs provide converging evidence that dopamine within the caudate-putamen, but also within extrastriatal basal ganglia nuclei, is involved in motor initiation by modulating the activity of direct and indirect intrinsic pathways. However, the striatal segregation of dopamine D1 and D2 receptors in control of the direct and indirect projection neurons seems not to be maintained throughout the basal ganglia. In dopamine intact animals, striatal glutamate plays a major role in response initiation probably through actions on striatopallidal neurons involving N-methyl-D-aspartate, but not alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors. Striatal adenosine might also contribute to movement initiation by acting on adenosine A2A receptors located on striatopallidal neurons. Analysis of two integral parts of the indirect pathway revealed that inactivation of the subthalamic nucleus was found to facilitate response initiation, while inactivation of the globus pallidus resulted in facilitation as well as inhibition of response initiation indicating a complex contribution of this latter nucleus. Glutamate and gamma-amino-butyric acid (GABA) controlling the activity of the substantia nigra pars reticulata could be involved in control of response initiation in a way predicted by the simplified model of basal ganglia functions. In contrast, the role of the entopeduncular nucleus in response initiation and its control through GABA and glutamate is at variance with this hypothesis, suggesting functional differences of the output structures. Taken together, neurochemical systems of the basal ganglia significantly contribute to intact response initiation by mechanisms which are only partly consistent with predictions of the current functional scheme of the basal ganglia. This suggests that a more complex model is required to account for these disparate findings.  相似文献   

18.
Growth/differentiation factor 5 (GDF5) is a neurotrophin which protects the rat nigrostriatal dopaminergic pathway from 6-hydroxydopamine-induced damage. Here we used amphetamine-induced rotational testing, high-performance liquid chromatography and immunocytochemistry to investigate the minimum effective dose of GDF5. We also compared the effectiveness of injecting GDF5 into either the substantia nigra pars compacta (SNpc), the lateral ventricle (LV) or the striatum (or combinations of these sites).  相似文献   

19.
We have previously observed that either hypoxic-ischemic or excitotoxic striatal injury during development is associated with a reduction in the adult number of dopaminergic neurons in the substantia nigra. This decrease occurs in the presence of preserved striatal dopaminergic markers and in the absence of direct nigral injury. We have also observed that natural cell death, with the morphology of apoptosis, occurs in the substantia nigra, and that there is an induced apoptotic cell death event following early striatal excitotoxic injury. We now report that forebrain hypoxic-ischemic injury is also associated with an induced cell death event in the substantia nigra, with both morphological and histochemical features of apoptosis. Induced apoptotic cell death occurs in immunohistochemically defined dopaminergic neurons. While the mechanisms for this induced cell death are not yet known, in the case of the pars compacta it may be related to the loss of normal striatal target-derived developmental support. Since dopaminergic neurons are postmitotic at the time of the injury, we conclude that this induced cell death is responsible for the diminished adult number of dopaminergic neurons. We also conclude that hypoxic-ischemic injury to the developing brain in general causes not only direct, necrotic injury to vulnerable regions, but also induced apoptotic death at remote sites. The significance of this finding is that apoptosis is a distinct death mechanism, with unique regulatory pathways, which can potentially be modified by approaches different from those which might influence cell death in regions of direct injury. In view of the present finding that apoptosis can occur in the setting of hypoxic-ischemic injury, and our previous work demonstrating its occurrence following excitotoxic injury, it seems likely that it may occur following other forms of injury to the immature brain in which excitotoxic injury plays a role, such as seizures, head trauma and hypoglycemia.  相似文献   

20.
During the last two decades, evidence has accumulated to demonstrate the existence, in the central nervous system, of an endogenous mechanism that exerts an inhibitory control over different forms of epileptic seizures. The substantia nigra and the superior colliculus have been described as key structures in this control circuit; inhibition of GABAergic neurons of the substantia nigra pars reticulata results in suppression of seizures in various animal models of epilepsy. The role in this control mechanism of the direct GABAergic projection from the striatum to the substantia nigra and of the indirect pathway, from the striatum through the globus pallidus and the subthalamic nucleus, was examined in a genetic model of absence seizures in the rat. In this model, pharmacological manipulations of both the direct and indirect pathways resulted in modulation of absence seizures. Activation of the direct pathway or inhibition of the indirect pathway suppressed absence seizures through disinhibition of neurons in the deep and intermediate layers of the superior colliculus. Dopamine D1 and D2 receptors in the nucleus accumbens, appear to be critical in these suppressive effects. Along with data from the literature, our results suggest that basal ganglia circuits play a major role in the modulation of absence seizures and provide a framework to understand the role of these circuits in the modulation of generalized seizures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号