首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Though the studies of wheel-legged robots have achieved great success, the existing ones still have defects in load distribution, structure stability and carrying capacity. For overcoming these shortcomings, a new kind of wheel-legged robot(Rolling-Wolf) is designed. It is actuated by means of ball screws and sliders, and each leg forms two stable triangle structures at any moment, which is simple but has high structure stability. The positional posture model and statics model are built and used to analyze the kinematic and mechanical properties of Rolling-Wolf. Based on these two models, important indexes for evaluating its motion performance are analyzed. According to the models and indexes, all of the structure parameters which influence the motion performance of Rolling-Wolf are optimized by the method of Archive-based Micro Genetic Algorithm(AMGA) by using Isight and Matlab software. Compared to the initial values, the maximum rotation angle of the thigh is improved by 4.17%, the maximum lifting height of the wheel is improved by 65.53%, and the maximum driving forces of the thigh and calf are decreased by 25.5% and 12.58%, respectively. The conspicuous optimization results indicate that Rolling-Wolf is much more excellent. The novel wheel-leg structure of Rolling-Wolf is efficient in promoting the load distribution, structure stability and carrying capacity of wheel-legged robot and the proposed optimization method provides a new approach for structure optimization.  相似文献   

2.
The independent driving wheel system, which is composed of in-wheel permanent magnet synchronous motor(I-PMSM) and tire, is more convenient to estimate the slip ratio because the rotary speed of the rotor can be accurately measured. However, the ring speed of the tire ring doesn’t equal to the rotor speed considering the tire deformation. For this reason, a deformable tire and a detailed I-PMSM are modeled by using Matlab/Simulink. Moreover, the tire/road contact interface(a slippery road) is accurately described by the non-linear relaxation length-based model and the Magic Formula pragmatic model. Based on the relatively accurate model, the error of slip ratio estimated by the rotor rotary speed is analyzed in both time and frequency domains when a quarter car is started by the I-PMSM with a definite target torque input curve. In addition, the natural frequencies(NFs) of the driving wheel system with variable parameters are illustrated to present the relationship between the slip ratio estimation error and the NF. According to this relationship, a low-pass filter, whose cut-off frequency corresponds to the NF, is proposed to eliminate the error in the estimated slip ratio. The analysis, concerning the effect of the driving wheel parameters and road conditions on slip ratio estimation, shows that the peak estimation error can be reduced up to 75% when the LPF is adopted. The robustness and effectiveness of the LPF are therefore validated. This paper builds up the deformable tire model and the detailed I-PMSM models, and analyzes the effect of the driving wheel parameters and road conditions on slip ratio estimation.  相似文献   

3.
A comprehensive, universally valid, elegant and yet simple method to design slender axisymmetric body of minimum wave drag in transonic and supersonic flows is developed. Computational aerodynamics is also used as a tool for numerical experiments in gaining physical understanding of the drag mechanism due to the geometry of the aftbody, such as the correlation between wave drag and wave distribution of the aftbody geometry. The method utilizes MFD (modified feasible direction) based optimization program, along with the linear slender body aerodynamics, for its elegance and generic optimization convenience. The efforts are focused on inviscid flow. A practical method of reducing the wave drag of a given body is developed for both bodies with pointed end and with base area, using shock wave generator at a particular location on the aftbody. The results show that the MFD optimization program can be effectively utilized in an aerodynamic optimization problem.  相似文献   

4.
Published studies in regard to coupler systems have been mainly focused on the manufacturing process or coupler strength issues. With the ever increasing of tonnage and length of heavy haul trains, lateral in-train forces generated by longitudinal in-train forces and coupler rotations have become a more and more significant safety issue for heavy haul train operations. Derailments caused by excessive lateral in-train forces are frequently reported. This article studies two typical coupler systems used on heavy haul locomotives. Their structures and stabilizing mechanism are analyzed before the corresponding models are developed. Coupler systems models are featured by two distinct stabilizing mechanism models and draft gear models with hysteresis considered. A model set which consists of four locomotives and three coupler systems is developed to study the rotational behavior of different coupler systems and their implications for locomotive dynamics. Simulated results indicate that when the locomotives are equipped with the type B coupler system, locomotives can meet the dynamics standard on tangent tracks; while the dynamics performance on curved tracks is very poor. The maximum longitudinal in-train force for locomotives equipped with the type B coupler system is 2000 kN. Simulations revealed a distinct trend for the type A coupler system. Locomotive dynamics are poorer for the type A case when locomotives are running on tangent tracks, while the dynamics are better for the type A case when locomotives are running on curved tracks. Theoretical studies and simulations carried out in this article suggest that a combination of the two types of stabilizing mechanism can result in a good design which can significantly decrease the relevant derailments.  相似文献   

5.
In remote regions with availability of wind energy, a RDG (renewable distributed generation) system is an advantageous alternative to increase the provision of electrical supply. Usually, these systems are structured on the basis of a connection to an existing weak grid. When the grid is out of service, the system may operate in islanding mode, if the RDG configuration allows it, continuing the provision of energy with standard voltage and frequency values. Facing the latter situation, a wind-diesel/gas generation system is proposed, with a conversion and control strategies based on a variable speed wind turbine employing a DFIG (doubly fed induction generator), a SC (ultracapacitor) storage system and a SG (synchronous generator) driven by a diesel/gas engine.  相似文献   

6.
7.
The science space in a state school in Natal city was built using a composite consisting of gypsum, EPS (expanded polystyrene), shredded tire, cement and water. Mechanical and thermal resistances were evaluated. Inside the blocks, three types of fillings (EPS plates, aluminum cans and 500 mL bottles of mineral water) were placed in order to obtain a walls with higher thermal resistance, but also to give it an ecologically correct order, considering that both the tire and the EPS occupy a large space in landfills and require years to be degraded when released into the environment. Compression tests were conducted according to the rules. The experiments demonstrated that the temperature difference between the internal and external surfaces on the walls reached levels above 12.0 ℃. It was also demonstrated that the proposed composite has adequate mechanical strength to be used for sealing walls. The proposed use of the composite can contribute to reduce the significant housing deficit of Brazil, producing popular houses at low cost and with little time to work.  相似文献   

8.
The reliability of mining systems is generally low due to their harsh working conditions. Currently, efforts for improving mining system reliability are often made in isolation. This practice could substantially limit the effectiveness of the efforts on overall reliability improvement of the mining system. To enhance the overall reliability of mining systems, an integrated improvement approach is necessary. In this paper, we developed a framework for integrated mining system reliability improvement to address this issue. In this framework, there are five major components including data integration, business process integration, hardware integration, software integration and analysis/decision integration, but we only focus on the integrated reliability analysis which is important to the analysis/decision integration. The reliability analysis considers the interactions between machines, and the impacts of design, operation, maintenance, automation and working environment on the overall system reliability. These multiple interactions present a big challenge to accurate reliability prediction. In this paper, we for the first time systematically investigated integrated reliability analysis approaches for dealing with this challenge using novel models and methods, including covariate hazard models, intelligent reliability prediction approach and complex system modeling methods. While these models and methods have found some successful applications in other industries, they in general have not been effectively used for the reliability analysis of mining systems. Our study results show that the system integration approach is applicable to mining systems and can be used for developing a computer aided integration system for the implementation of the integrated reliability improvement approach.  相似文献   

9.
This work continues the approach of one of our topics relating to a MOM-THP (metal on metal-total hip prostheses) with self-directed movement balls. Experiments revealed a certain seizure in some strain conditions. Laboratory trials for balls/plane Hertzian contacts have been restarted in order to determine seizure behaviour depending on the roughness of the flat area. The trials have been carried out in BSF (body simulated fluid) lubrication conditions, much closer to the real operating conditions up against the initial tests with distilled water. Seizure burdens to different loadings and contact surfaces roughness influence over the seizure burden have been determined. Even though the minimum value of the wear must be the same with the minimum value of the surfaces roughness, given the experimental conditions, it came out from the trials results on wear that the lowest level of wear is acquired at a certain value of roughness, not at the lowest level of roughness.  相似文献   

10.
Fluid film bearings are widely used as support elements of rotating shaft for HDD (hard disk drive) spindle motors. Recently, the opportunity for the HDD spindle motors exposed to external vibration has been increasing because the HDDs are used for various information related equipments such as mobile PCs, car navigation systems. Hence, the rotating shaft has a possibility to come in contact with the bearing and it causes wear or seizure to the bearing surface. In order to avoid the problems, it is extremely important to enhance the dynamic characteristics of the fluid film bearings for spindles. However, verification from both theory and experiment of dynamic characteristics such as spring coefficients and damping coefficients is rare and few. In this paper, the bearing vibration characteristics when the HDD spindle is oscillated are investigated theoretically and experimentally. And then the identification method ofoil film coefficients of fluid film bearing spindles is described.  相似文献   

11.
The present work consists of dynamic detection of damages in reinforced concrete bridges by using a MMUM (mathematical model updating method) from incomplete test data. A well suited finite element model of a repaired bridge is carried out. The diagnosis enables us to locate and detect the damage in a reinforced concrete bridge. Thus, developments of analytical predictions have been checked by modal testing techniques. Besides, the FTCS (finite time centered space) scheme is developed to solve the set of equations which can easily handle finite element matrices of a bridge model. It is shown in this study that the method is applied to detect damages as well as existing cracks in real time of a repaired bridge. To check the efficiency of the method, the repaired bridge of OuedOumazer in Algeria has been selected. It is proven that identification methods have been able to detect the exact location of damage areas to be corrected avoiding the inaccuracy from the finite element model for the mass, stiffness and loading.  相似文献   

12.
Currently, relatively large errors are found in numerical results in some low-specific-speed centrifugal pumps with unshrouded impeller because the effect of clearances and holes are not accurately modeled. Establishing an accurate analytical model to improve performance prediction accuracy is therefore necessary. In this paper, a three-dimensional numerical simulation is conducted to predict the performance of a low-specific-speed centrifugal pump, and the modeling, numerical scheme, and turbulent selection methods are discussed. The pump performance is tested in a model pump test bench, and flow rate, head, power and efficiency of the pump are obtained. The effect of taking into consideration the back-out vane passage, clearance, and balance holes is analyzed by comparing it with experimental results, and the performance prediction methods are validated by experiments. The analysis results show that the pump performance can be accurately predicted by the improved method. Ignoring the back-out vane passage in the calculation model of unshrouded impeller is found to generate better numerical results. Further, the calculation model with the clearances and balance holes can obviously enhance the numerical accuracy. The application of disconnect interface can reduce meshing difficulty but increase the calculation error at the off-design operating point at the same time. Compared with the standard k-ε, renormalization group k-ε, and Spalart-Allmars models, the Realizable k-ε model demonstrates the fastest convergent speed and the highest precision for the unshrouded impeller flow simulation. The proposed modeling and numerical simulation methods can improve the performance prediction accuracy of the low-specific-speed centrifugal pumps, and the modeling method is especially suitable for the centrifugal pump with unshrouded impeller.  相似文献   

13.
In the context of this paper, a small scale, medium precision, stabilized pan/tilt platform is developed as a prototype, which is used to compare various stabilization algorithms experimentally. The overall performance of the system depends on rigid body dynamics, structural dynamics, servo control loops, stabilization control algorithm, sensor fusion algorithm and sensory feedback such as from the IMU (inertial measurement unit). In the case that the response bandwidth of the overall system is high enough, the same hardware can also achieve active vibration isolation. All of these design aspects are investigated in the paper via numerical models and with their experimental verification.  相似文献   

14.
This paper describes the experimental study on shock response of FDB (fluid dynamic bearing) spindle for HDDs (hard disk drives). The FDBs are widely used as rotating shaft support elements for HDD spindle motors. Recently, the opportunity for the HDD spindle motors exposed to external vibration has been increasing because the HDDs are used for various information related equipment such as mobile PCs (personal computers), video cameras, car navigation systems and so on. Hence, the rotating shaft has a possibility to come in contact with the bearing by external shocks and it causes wear or seizure to the bearing surface. To avoid the problem, it is extremely important to know how the spindle moves against the large shock on HDDs experimentally. However, as far as the authors know, there are few experimental studies treating the shock response of HDD spindles. In this paper, firstly, we propose a new test rig and experimental method for shock response of FDB spindles. Then the shock tests against the radial and axial disturbance on FDB spindle for 2.5" HDD are conducted. Finally, the experimental results of shock response waveforms and maximum displacement of disk are shown.  相似文献   

15.
Many joint models available to predict secondary bending moments in the structure have a stiffness mismatch, while this type of structure widely used in aircraft. To determine how to represent a structure with a stiffness mismatch in a combined joint (bonded/riveted), a non-linear finite element analysis was performed. The detailed validation of this analysis identified the composite stiffened skin as the most suitable model in three dimensions. The use of this model for validating the secondary bending moment to calculate the behavior of the stiffener edge is straightforward and reliable. Experiments were performed to determine the distribution of the load in a combined joint under a tensile load that creates a secondary bending moment in a structure with a stiffness mismatch. The influence of related joint design considerations on the load transferred by the joint were examined through a finite element parameter analysis. The results are compared to determine best approach to predict the mechanical behavior at the edge of the stiffener. A close agreement between the finite element analysis and experimental results was obtained. Test observations using a C-scan compared well with the predictions of the onset of crack growth.  相似文献   

16.
This paper deals with the influence of phase modulated synthetic jet on the aerodynamics of the hump in a closed test section Of the Eiffel-type wind tunnel. Three experimental methods of measurement techniques of this phenomenon were used: the pressure profile using the Kiel total pressure probe, the velocity profile using the CTA (constant temperature anemometry) probe and the visualization of the flow field using the hot film and the thermo camera, The experimental results with and without the influence of the synthetic jet were compared, as well the impact of the phase shift of the neighbouring synthetic jets. As a reference case, the flow around the hump without the influence of the synthetic jet was selected. The results of the measurement are presented in figures and compared.  相似文献   

17.
A stress analysis is described for a nuclear steam generator tubesheet with a thin, or irregular ligament, associated with a mis-drilled hole using the rules of ASME (American Society of Mechanical Engineers) B & PV Section Ⅲ and non-mandatory Appendix A, Article A-8000 for stresses in perforated flat plates. The analysis demonstrates the proper application of the NB-3200 rules for this special application, with discussion of the differences between an actual tube hole deviation and what is assumed in ASME Appendix A. This is a companion paper to "Technical Justification Supporting Operation with a Tube Installed in a Mis-Drilled Hole of a Steam Generator Tubesheet".  相似文献   

18.
Case-Based Reasoning(CBR) Model for Ultra-Fast Cooling in Plate Mill   总被引:1,自引:1,他引:0  
New generation thermo-mechanical control process(TMCP) based on ultra-fast cooling is being widely adopted in plate mill to product high-performance steel material at low cost. Ultra-fast cooling system is complex because of optimizing the temperature control error generated by heat transfer mathematical model and process parameters. In order to simplify the system and improve the temperature control precision in ultra-fast cooling process, several existing models of case-based reasoning(CBR) model are reviewed. Combining with ultra-fast cooling process, a developed R5 CBR model is proposed, which mainly improves the case representation, similarity relation and retrieval module. Certainty factor is defined in semantics memory unit of plate case which provides not only internal data reliability but also product performance reliability. Similarity relation is improved by defined power index similarity membership function. Retrieval process is simplified and retrieval efficiency is improved apparently by windmill retrieval algorithm. The proposed CBR model is used for predicting the case of cooling strategy and its capability is superior to traditional process model. In order to perform comprehensive investigations on ultra-fast cooling process, different steel plates are considered for the experiment. The validation experiment and industrial production of proposed CBR model are carried out, which demonstrated that finish cooling temperature(FCT) error is controlled within±25℃ and quality rate of product is more than 97%. The proposed CBR model can simplify ultra-fast cooling system and give quality performance for steel product.  相似文献   

19.
In the field of aerospace, high-speed trains and automobile, etc, analysis of temperature filed and scuffing failure of tapered roller bearings are more important than ever, and the scuffing failure of elements of such rolling bearings under heavy load and high speed still cannot be effectively predicted yet. A simplified model of tapered roller bearings consisted of one inner raceway, one outer raceway and a tapered roller was established, in which the interaction of several heat sources is ignored. The contact mechanics model, temperature model and model of scuffing failure are synthesized, and the corresponding computer programs are developed to analyze the effects of bearings parameters, different material and operational conditions on thermal performance of bearings, and temperature distribution and the possibility of surface scuffing are obtained. The results show that load, speed, thermal conductivity and tapered roller materials influence temperature rise and scuffing failure of bearings. Ceramic material of tapered roller results in the decrease of scuffing possibility of bearings to a high extent than the conventional rolling bearing steel. Compared with bulk temperature, flash temperature on the surfaces of bearing elements has a little influence on maximum temperature rise of bearing elements. For the rolling bearings operated under high speed and heavy load, this paper proposes a method which can accurately calculate the possibility of scuffing failure of rolling bearings.  相似文献   

20.
Generally, the fatigue crack is initiated and then it is propagated toward the welding direction and the thickness direction. Finally, the joints lose the resistance to the external force. At present, as there is no deciding method of the fatigue strength (fatigue life), this paper proposed it from the result obtained by bending test for fillet welded joints. Judging initiation of the fatigue crack from the measured value of strain gages, there was a possibility that the fatigue crack occurred at both sides of fillet welded joints. However, this was a different result from that of macrograph of cross section. On the other hand, the results obtained by FSM (field signature method) coincided with the result of macrograph of cross section. For the initial state, potential difference obtained by the electrostatic analysis based on FEM (finite element method) and that by FSM was accurately coincided. After confirming validity of the crack model for analysis, the crack model was specified by reproducing the propagating process of crack accurately through trial and error. It was concluded that the state which could not resist to the external force was regarded as fatigue strength based on equivalent stress obtained by elastic stress analysis for specified crack model. From the experimental result, it was proposed that 90% of repetition number corresponding to the state which could not resist to the external force (at the finish of the test) was regarded as fatigue strength (fatigue life) in consideration of safety and as the first approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号