共查询到20条相似文献,搜索用时 0 毫秒
1.
A fundamental knowledge of fuel behavior in different situations is required for safe and economic nuclear power generation. Due to the importance of a fuel rod behavior modelling in high burnup, in this paper, the radial distribution of burnup, fission products, and actinides atom density and their variations by increasing burnup and other factors such as temperature, enrichment and power density are studied in a fuel pellet of a VVER-1000 reactor in an operational cycle using the MCNPX 2.7 Monte Carlo code. A benchmark including a Uranium-Gadolinium (UGD) fuel assembly is used for verification of the developed model in the MCNPX code for radial burnup calculation. A sensitivity study is carried out to investigate the effect of different parameters such as the number of particles per cycle, the number of geometrical radial nodes in the fuel pellet, the number of burnup steps and the selection of different fission-product contents (i.e. those isotopes that are used for particle transport) on the MCNPX model for speed and accuracy compromising. To calculate the radial temperature profiles and to analyze the effect of temperature on the radial burnup distribution and vice versa, the HEATING 7.2 code, which is a general-purpose conduction heat transfer program, and the MCNPX code are applied together. The results show the accuracy and capability of the proposed model in the MCNPX and HEATING codes for radial burnup calculation. 相似文献
2.
Numerical solutions based on finite-difference method require the domain in the problem to be divided into a number of nodes in the form of triangles, rectangular, and so on. To apply the finite-difference method in reactor physics for solving the diffusion equation with satisfactory accuracy, the distance between adjacent mesh-points should be small in comparison with a neutron mean free path. In this regard the effect of number of mesh points on the accuracy and computation time have been investigated using the VVER-1000 reactor of Bushehr NPP as an example, and utilizing WIMS and CITATION codes. The best results obtained in this study belong to meshing models with higher numbers of mesh-points in both radial and axial directions of the reactor core. 相似文献
3.
In this paper, the effect of nanofluids as the coolant on solid and annular fuels for a typical VVER-1000 core is analysed. The considered nanofluids are various mixture composed of water and particles of Al2O3, TiO2, and CuO. The fuel rod is modeled using a CFD code. To validate the calculated results, the present results of solid fuel with nanofluid and pure water are compared with other studies which have been done with visual FORTRAN language, DRAGON/DONJON code, COBRA-EN code and the mentioned analytical approaches have been validated by comparing with the final safety analysis report (FSAR). The comparison of the calculated results shows that the results are in good agreement with other studies. Thus, the accuracy of the validation is satisfactory. Radial and axial temperature distributions in various components of fuel are illustrated. Moreover, the temperature distributions of the fuel, clad and coolant are described for water based Al2O3, TiO2, and CuOnanofluids in solid fuel and annular fuel. The results are compared with base fluid and it is concluded the nanoparticles of Al2O3have good properties in comparison with other nanoparticles. By using the nanofluids, the central fuel temperature is reduced and the temperature of the coolant is increased. In addition, by increasing the heated surfaces in annular fuel, the heat flux on these surfaces is reduced, the minimum departure from nucleate boiling ratio (MDNBR) margin is increased, and therefore the critical heat flux can be increased. Finally, it is concluded the use of the annular fuel instead of solid fuel and also the use of the nanofluids as coolant in the core of the reactor, security and efficiency of the nuclear power plant will be increased. 相似文献
4.
The VVER-1000 coolant transient benchmark is intended for validation of couplings of the thermal hydraulic codes and three-dimensional neutron kinetic core models. It concerns switching on a main coolant pump when the other three main coolant pumps are in operation. The problem is based on an experiment performed in Kozloduy NPP in Bulgaria. In addition to the real plant transient, an extreme scenario concerning a control rod ejection after switching on a main coolant pump was calculated. At VTT the three-dimensional advanced nodal code HEXTRAN is used for the core dynamics, and the system code SMABRE as a thermal hydraulic model for the primary and secondary loop. The parallelly coupled HEXTRAN–SMABRE code has been in production use since early 1990s, and it has been extensively used for analyses of VVER NPPs. The SMABRE input model is based on the standard VVER-1000 input used at VTT. The whole core calculation is performed with HEXTRAN. Also the core model is based on earlier VVER-1000 models. Nuclear data for the calculation were specified in the benchmark. The paper outlines the input models used for both codes. Calculated results are introduced both for the coupled core system with inlet and outlet boundary conditions and for the whole plant model. Parametric studies have been performed for selected parameters. 相似文献
5.
AP1000是美国西屋公司研发的大型压水反应堆,采用先进的非能动安全系统。AP1000反应堆有两种堆芯燃料布置方案:D19和Adv。结合两种设计方案的优点提出了一种新的堆芯燃料布置方案。利用MCNP6(Monte Carlo N-particle 6)程序对D19堆芯和新方案堆芯的首循环进行建模,并主要计算了新堆芯的核设计参数随燃耗的变化。结果表明,新堆芯在首循环寿期内满足AP1000的主要核设计准则。通过大规模并行计算表明,带燃耗计算功能的蒙特卡罗程序MCNP6能够在堆芯设计工作中发挥很好的参考作用。 相似文献
6.
The main objective of this paper is to study the effects of various spacer grid models on the neutronic parameters of a VVER-1000 reactor. Specifically, the data of the nuclear power plant at the Bushehr site, which is of a VVER-1000 type, will be studied. Three models, representing the spacer grids along the fuel assemblies are presented. These three models are the homogeneous and the heterogeneous local spacer grid models and the shroud spacer grid model. In the homogeneous and the heterogeneous models, the spacer grids are considered at their actual locations in the axial direction. The only difference between the two models is that in the homogeneous model, the spacer grids are homogenized with the coolant while in the heterogeneous model, the spacer grids are modeled around the fuel cells at their exact axial positions. In the shroud model, the spacer grids are modeled in the shroud region containing the coolant and are not necessarily placed at their appropriate axial positions. 相似文献
7.
8.
S. Langenbuch J. Hadek K.-D. Schmidt K. Velkov 《Progress in Nuclear Energy》2006,48(8):912-1Benchmark
The VVER-1000 Coolant Transient Benchmark consists of two phases and refers to experimental data from the Kozloduy Unit 6 Nuclear Power Plant in Bulgaria. The paper describes the modelling features and their impact on the results of the Exercise 1, Phase 1 of the Benchmark obtained by two ATHLET user groups, namely GRS and NRI. The simulated transient is a main coolant pump (MCP) switching on in one loop at reduced power while three other MCPs are in operation. Particular attention is paid to the influence of the reactor vessel modelling and especially of the nodalization in the upper plenum. The comparison and discussion of the two simulation results confirm that the two solutions with the ATHLET system code achieve quite good system response of the plant transient. 相似文献
9.
Developing a reliable thermal-hydraulic model of the steam generator is an essential process in the steady state and transient analysis for the Pressurized Water Reactor type of the Nuclear Power Plants. This paper provides a semi two dimensional thermal-hydraulic model of the PGV-1000 horizontal steam generator using the RELAP5 code. Applying the qualified nodalization and the cross-flow effects are some of the advantages in the present model. The obtained results from the RELAP5 steady state analysis showed a reasonable agreement with the Bushehr NPP Final Safety Analysis Reports (FSAR). 相似文献
10.
In the framework of joint effort between the Nuclear Energy Agency (NEA) of OECD, the United States Department of Energy (US DOE), and the Commissariat a l'Energie Atomique (CEA), France a coupled three-dimensional (3D) thermal-hydraulics/neutron kinetics benchmark for VVER-1000 was defined. The benchmark consists of calculation of a pump start-up experiment labelled V1000CT-1 (Phase 1), as well as a vessel mixing experiment and main steam line break (MSLB) transient labelled V1000CT-2 (Phase 2), respectively. The reference nuclear plant is Kozloduy-6 in Bulgaria. The overall objective is to assess computer codes used in the analysis of VVER-1000 reactivity transients. A specific objective is to assess the vessel mixing models used in system codes. Plant data are available for code validation consisting of one experiment of pump start-up (V1000CT-1) and one experiment of steam generator isolation (V1000CT-2). The validated codes can be used to calculate asymmetric MSLB transients involving similar mixing patterns. This paper summarizes a comparison of CATHARE and TRAC-PF1 system code results for V1000CT-1, Exercise 1, which is a full plant point kinetics simulation of a reactor coolant system (RCS) pump start-up experiment. The reference plant data include integral and sector average parameters. The comparison is made from the point of view of vessel mixing and full system simulation. CATHARE used a six-sector multiple 1D vessel thermal-hydraulic model with cross flows and TRAC used a six-sector, 18-channel coarse-mesh 3D vessel model. Good agreement in terms of integral parameters and inter-loop mixing is observed. 相似文献
11.
Plant-measured data provided within the specification of the OECD/NEA VVER-1000 coolant transient benchmark (V1000CT) were used to validate the DYN3D/RELAP5 and DYN3D/ATHLET coupled code systems. Phase 1 of the benchmark (V1000CT-1) refers to the MCP (main coolant pump) switching on experiment conducted in the frame of the plant-commissioning activities at the Kozloduy NPP Unit 6 in Bulgaria. The experiment was started at the beginning of cycle (BOC) with average core expose of 30.7 effective full power days (EFPD), when the reactor power was at 27.5% of the nominal level and three out of four MCPs were operating. The transient is characterized by a rapid increase in the primary coolant flow through the core and, as a consequence, a decrease of the space-dependent core inlet temperature. Both DYN3D/RELAP5 and DYN3D/ATHLET analyses were based on the same reactor model, including identical MCP characteristics, boundary conditions, benchmark-specified nuclear data library and nearly identical nodalization schemes. For an adequate modelling of the redistribution of the coolant flow in the reactor pressure vessel during the transient a simplified mixing model for the DYN3D/ATHLET code was developed and validated against a computational fluid dynamics calculation.
The results of both coupled code calculations are in good agreement with the available experimental data. The discrepancies between experimental data and the results of both coupled code calculations do not exceed the accuracy of the measurement data. This concerns the initial steady-state data as well as the time histories during the transient. In addition to the validation of the coupled code systems against measured data, a code-to-code comparison between simulation results has been performed to evaluate relevant thermal hydraulic models of the system codes RELAP5 and ATHLET and to explain differences between the calculation results. 相似文献
12.
13.
B. Chatterjee D. Mukhopadhyay A.K. Ghosh Pavlin Groudev 《Nuclear Engineering and Design》2009,239(3):559-565
Severe accident studies for very low frequency events for VVER-1000 (V320) are carried out to estimate in-vessel damage progression under steam-rich and starved conditions. The analyses with code ASTEC, jointly developed by IRSN (France) and GRS, Germany), have shown the influence of steam environment on core heat-up followed by material relocation, hydrogen production, vessel failure and aerosol generation along with release to containment. Hydro-accumulator injection for studied transients also gives rise to a steam-rich environment enhancing the material oxidation depending on the injection time and period. The generated information along with PSA-Level 2 is helpful to decide Plant Damage State (PDS) and fruitfully develop accident management strategies for the plant. 相似文献
14.
Anis Bousbia Salah Juswald Vedovi Francesco D''Auria Giorgio Galassi Kostadin Ivanov 《Progress in Nuclear Energy》2006,48(8):806-1Benchmark
Incorporation of full three-dimensional models of the reactor core into system thermal–hydraulic transient codes allows better estimation of interactions between the core behavior and plant dynamics. Considerable efforts have been made in various countries and organizations to verify and validate the capability of the so-called coupled codes technique. For these purposes appropriate Light Water Reactor (LWR) transient benchmarks based upon programmed transients performed in Nuclear Power Plants (NPP) were recently developed on a higher ‘best-estimate’ level. The reference problem considered in the current framework is a Main Coolant Pump (MCP) switching-on transient in a VVER1000 NPP. This event is characterized by a positive reactivity addition as consequence of the increase of the core flow. In the current study the coupled RELAP5/PARCS code is used to reproduce the considered test. Results of calculation were assessed against experimental data and also through the code-to-code comparison. 相似文献
15.
16.
17.
DINROS是应用于多环路、多回路快中子反应堆装置瞬态工况分析计算的系统程序,也可以用于快中子反应堆动态特性及安全性能的研究.给出了DINROS程序在中国实验快堆事故分析中的应用. 相似文献
18.
This paper presents the results of thermal-hydraulic calculations of a large break loss of coolant accident (LBLOCA) analysis for a VVER-1000/V446 unit at Bushehr nuclear power plant (BNPP). LBLOCA is analysis in two different beyond design basis accident (BDBA) scenarios using the RELAP5/MOD3.2 best estimate code. The scenarios are LBLOCA with station blackout (SBO) and LBLOCA with pump re-circulation blockage which have been evaluated in the final safety analysis report (FSAR) of BNPP. A model of VVER-1000 reactor based on Unit 1 of BNPP has been developed for the RELAP5/MOD3.2 thermal-hydraulics code consists of 4-loop primary and secondary systems with all their relevant sub-systems important to safety analysis. The analysis is performed without regard for operator's actions on accident management. The safety analysis is carried out and the results are checked against the acceptance criteria which are the possibility of using water inventory in the emergency core cooling system (ECCS) accumulators and the KWU tanks for core cooling and the available time to operators before the maximum design limit of fuel rod cladding damage is reached. These kinds of analyses are performed to provide the response of monitored plant parameters to identify symptoms available to the operators, timing of the loss of critical safety functions and timing of operator actions to avoid the loss of critical safety functions of core damage. The results of performed analyses show that the operators have 2.9 and 3.1 h for LBLOCA with SBO and LBLOCA with pump re-circulation blockage scenarios, respectively, before the fuel rod cladding rupture. The results are also compared with the BNPP FSAR data. 相似文献
19.
20.
Seungwon Seo Yongjae Lee Seongnyeon Lee Hwan-Yeol Kim 《Journal of Nuclear Science and Technology》2013,50(5):695-708
Severe accident analysis for Korean OPR1000 with MELCOR 1.8.6 was performed by adapting a mitigation strategy under different entry conditions of Severe Accident Management Guidance (SAMG). The analysis was focused on the effectiveness of the mitigation strategy and its adverse effects. Four core exit temperatures (CETs) were selected as SAMG entry conditions, and Small Break Loss of Coolant Accident (SBLOCA), Station Blackout (SBO), and Total Loss of Feed Water (TLOFW) were selected as postulated scenarios that may propagate into severe accidents. In order to delay reactor pressure vessel (RPV) failure, entering the SAMG when the CET reached 923 K, 923 K, and 753 K resulted in the best results for SBLOCA, SBO, and TLOFW scenarios, respectively. This implies that using event-based diagnosis for severe accidents may be more beneficial than using symptom-based diagnosis. There is no significant difference among selected SAMG entry conditions in light of the operator's available action time before the RPV failure. Potential vulnerability of the RPV due to hydrogen generation was analyzed to investigate the foreseeable adverse effects that act against the accident mitigation strategies. For the SBLOCA cases, mitigation cases generated more hydrogen than the base case. However, the amount of hydrogen generated was similar between the base and mitigation cases for SBO and TLOFW. Hydrogen concentrations of containment were less than 5% before RPV failure for most cases. 相似文献