首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 155 毫秒
1.
The study of effect of injection timing along with engine operating parameters in Jatropha biodiesel engine is important as they significantly affect its performance and emissions. The present paper focuses on the experimental investigation of the influence of injection timing, load torque and engine speed on the performance, combustion and emission characteristics of Jatropha biodiesel engine. For this purpose, the experiments were conducted using full factorial design consisting of (33) with 27 runs for each fuel, diesel and Jatropha biodiesel. The effect of variation of above three parameters on brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), peak cylinder pressure (Pmax), maximum heat release rate (HRRmax), CO, HC, NO emissions and smoke density were investigated. It has been observed that advance in injection timing from factory settings caused reduction in BSFC, CO, HC and smoke levels and increase in BTE, Pmax, HRRmax and NO emission with Jatropha biodiesel operation. However, retarded injection timing caused effects in the other way. At 15 N m load torque, 1800 rpm engine speed and 340 crank angle degree (CAD) injection timing, the percentage reduction in BSFC, CO, HC and smoke levels were 5.1%, 2.5%, 1.2% and 1.5% respectively. Similarly the percentage increase in BTE, Pmax, HRRmax and NO emission at this injection timing, load and speed were 5.3%, 1.8%, 26% and 20% respectively. The best injection timing for Jatropha biodiesel operation with minimum BSFC, CO, HC and smoke and with maximum BTE, Pmax, HRRmax is found to be 340 CAD. Nevertheless, minimum NO emission yielded an optimum injection timing of 350 CAD.  相似文献   

2.
This study is aimed at investigating the effect of injection system parameters such as injection pressure, injection timing and nozzle tip protrusion on the performance and emission characteristics of a twin cylinder water cooled naturally aspirated CIDI engine. Biodiesel, derived from pongamia seeds through transesterification process, blended with diesel was used as fuel in this work. The experiments were designed using a statistical tool known as Design of Experiments (DoE) based on response surface methodology (RSM). The resultant models of the response surface methodology were helpful to predict the response parameters such as Brake Specific Energy Consumption (BSEC), Brake Thermal Efficiency (BTE), Carbon monoxide (CO), Hydrocarbon (HC), smoke opacity and Nitrogen Oxides (NOx) and further to identify the significant interactions between the input factors on the responses. The results depicted that the BSEC, CO, HC and smoke opacity were lesser, and BTE and NOx were higher at 2.5 mm nozzle tip protrusion, 225 bar of injection pressure and at 30° BTDC of injection timing. Optimization of injection system parameters was performed using the desirability approach of the response surface methodology for better performance and lower NOx emission. An injection pressure of 225 bar, injection timing of 21° BTDC and 2.5 mm nozzle tip protrusion were found to be optimal values for the pongamia biodiesel blended diesel fuel operation in the test engine of 7.5 kW at 1500 rpm.  相似文献   

3.
This paper investigates the effects of turbocharger on the performance of a diesel engine using diesel fuel and biodiesel in terms of brake power, torque, brake specific consumption and thermal efficiency, as well as CO and NOx emissions. For this aim, a naturally aspirated four-stroke direct injection diesel engine was tested with diesel fuel and neat biodiesel, which is rapeseed oil methyl ester, at full load conditions at the speeds between 1200 and 2400 rpm with intervals of 200 rpm. Then, a turbocharger system was installed on the engine and the tests were repeated for both fuel cases. The evaluation of experimental data showed that the brake thermal efficiency of biodiesel was slightly higher than that of diesel fuel in both naturally aspirated and turbocharged conditions, while biodiesel yielded slightly lower brake power and torque along with higher fuel consumption values. It was also observed that emissions of CO in the operations with biodiesel were lower than those in the operations with diesel fuel, whereas NOx emission in biodiesel operation was higher. This study reveals that the use of biodiesel improves the performance parameters and decreases CO emissions of the turbocharged engine compared to diesel fuel.  相似文献   

4.
G.R. KannanR. Anand 《Energy》2011,36(3):1680-1687
Experiments were conducted on a single cylinder direct injection diesel engine using diesel, biodiesel and biodiesel-diesel-ethanol (diestrol) water micro emulsion fuels to investigate the performance, emission and combustion characteristics of the engine under different load conditions at a constant speed of 1500 rpm. The results indicated that biodiesel and micro emulsion fuels had a higher brake specific fuel consumption (BSFC) than that of diesel. A slight improvement in the brake specific energy consumption (BSEC) was observed for micro emulsion fuels. The brake thermal efficiency of biodiesel and micro emulsion fuels were comparable to that of diesel. The emission characteristics like carbon monoxide (CO), carbon dioxide (CO2), unburnt hydrocarbon (UHC), nitric oxide (NO) and smoke emissions for biodiesel and micro emulsion fuels were lower than diesel fuel at all load conditions. The cylinder gas pressure of micro emulsion fuels was lower than diesel at low loads but it became almost identical to diesel at medium and full load conditions. The heat release rate for micro emulsion fuels was higher than biodiesel and diesel fuels for all loads. Biodiesel showed shorter ignition delay for the entire load range and the longer ignition delay observed for micro emulsion fuels.  相似文献   

5.
This study reports the results of an experimental investigation of the performance of an IC engine fueled with a Karanja biodiesel blends, followed by multi-objective optimization with respect to engine emissions and fuel economy, in order to determine the optimum biodiesel blend and injection timings complying with Bharat Stage II emission norms. Nonlinear regression has been used to regress the experimentally obtained data to predict the brake thermal efficiency, NOx, HC and smoke emissions based on injection timing, blend ratio and power output. To acquire the data, experimental studies have been conducted on a single cylinder, constant speed (1500 rpm), direct injection diesel engine under variable load conditions and injection timings for neat diesel and various Karanja biodiesel blends (5%, 10%, 15%, 20%, 50% and 100%). Retarding the injection timing for neat Karanja biodiesel resulted in an improved efficiency and lower HC emissions. A tradeoff relationship between the NOx and smoke emissions is observed, which makes it difficult to determine the optimum blend ratio. The functional relationship developed between the correlating variables using nonlinear regression is able to predict the performance and emission characteristics with a correlation coefficient (R) in the range of 0.95-0.99 and very low root mean square errors. The outputs obtained using these functions are used to evaluate the multi-objective function of optimization process in the 0-20% blend range. The overall optimum is found to be 13% biodiesel-diesel blend with an injection timing of 24°bTDC, when equal weightage is given to emissions and efficiency.  相似文献   

6.
7.
Neat mahua oil poses some problems when subjected to prolonged usage in CI engine. The transesterification of mahua oil can reduce these problems. The use of biodiesel fuel as substitute for conventional petroleum fuel in heavy-duty diesel engine is receiving an increasing amount of attention. This interest is based on the properties of bio-diesel including the fact that it is produced from a renewable resource, its biodegradability and potential to exhaust emissions. A Cummins 6BTA 5.9 G2- 1, 158 HP rated power, turbocharged, DI, water cooled diesel engine was run on diesel, methyl ester of mahua oil and its blends at constant speed of 1500 rpm under variable load conditions. The volumetric blending ratios of biodiesel with conventional diesel fuel were set at 0, 20, 40, 60, and 100. Engine performance (brake specific fuel consumption, brake specific energy consumption, thermal efficiency and exhaust gas temperature) and emissions (CO, HC and NOx) were measured to evaluate and compute the behavior of the diesel engine running on biodiesel. The results indicate that with the increase of biodiesel in the blends CO, HC reduces significantly, fuel consumption and NOx emission of biodiesel increases slightly compared with diesel. Brake specific energy consumption decreases and thermal efficiency of engine slightly increases when operating on 20% biodiesel than that operating on diesel.  相似文献   

8.
Many performance and emission tests have been carried out in reciprocating diesel engines that use biodiesel fuel over the past years and very few in gas turbine engines. This work aims at assessing the thermal performance and emissions at full and partial loads of a 30 kW diesel micro-turbine engine fed with diesel, biodiesel and their blends as fuel. A cycle simulation was performed using the Gate Cycle GE Enter software to evaluate the thermal performance of the 30 kW micro-turbine engine. Performance and emission tests were carried out on a 30 kW diesel micro-turbine engine installed in the NEST laboratories of the Federal University of Itajubá, and the performance results were compared with those of the simulation. There was a good agreement between the simulations and the experimental results from the full load down to about 50% of the load for diesel, biodiesel and their blends. The biodiesel and its blends used as fuel in micro-turbines led to no significant changes in the engine performance and behaviour compared to diesel fuel. The exhaust emissions were evaluated for pure biodiesel and its blends and conventional diesel. The results revealed that the use of biodiesel resulted in a slightly higher CO, lower NOx and no SO2 emissions.  相似文献   

9.
The objective of this paper was to study the effects of the injection pressure and injection timing on the combustion and emission characteristics in a single-cylinder common-rail direct injection (CRDI) diesel engine fueled with waste cooking oil (WCO) biodiesel and commercial diesel fuel. The fuel property including fatty acid composition for the biodiesel were measured and compared with those of the conventional diesel fuel. The engine tests were conducted at two injection pressures (80 and 160 MPa) and different injection timings from −25 to 0 crank angle degree (CAD) after top dead center (aTDC) under two different engine loads. The results showed that the indicated specific fuel consumption (ISFC) with respect to the injection timings of the biodiesel was higher than that of the diesel fuel under all experimental conditions. The peak cylinder pressure and the peak heat release rate of the biodiesel were slightly lower, while the ignition delay was slightly longer under all operating conditions. In terms of emissions, the biodiesel had benefits in reduction of smoke, carbon monoxide (CO), hydrocarbon (HC) emissions especially with high fuel injection pressure. The nitrogen oxide (NOx) emissions of the biodiesel were relatively higher than those of the diesel under all experimental conditions.  相似文献   

10.
ABSTRACT

In the present research work, the experimental analysis has been executed to investigate the influence of diethyl ether as an oxygenated additive to the diesel-biodiesel blend on the performance, combustion and emission characteristics of a diesel engine. The biodiesel (Frying oil methyl ester) was prepared by the transesterification process, and the biodiesel was added (40% by volume) to the diesel fuel to prepare the diesel-biodiesel blend (D60FME40). The diethyl ether was added to the diesel-biodiesel blends D60FM35 (diesel 60% + biodiesel 35% by volume) and D60FM30 (diesel 60% + biodiesel 30% by volume) with suitable volume proportions of 5% and 10% respectively to form diesel-biodiesel-diethyl ether blends ((D60FM35DEE5) & (D60FM30DEE10)). Initially, the test was conducted with diesel fuel to obtain the baseline reference reading. Then, the reading was compared with results taken from the engine using a diesel-biodiesel blend (D60FME40) and diethyl ether blends (D60FM35DEE5) & (D60FM30DEE10). The results reveal that the maximum brake thermal efficiency was obtained with diesel fuel and it was higher than the diesel-biodiesel blend and diethyl ether blends. The peak in-cylinder gas pressure and heat release rate in the premixed stage was less for the diesel-biodiesel blend, but it was increased with the addition of diethyl ether to the blend. The diesel-biodiesel-diethyl ether blends show less carbon monoxide and hydrocarbon emissions except for NOX emission as compared to the diesel and diesel-biodiesel blend, especially at the engine rated power.  相似文献   

11.
Biofuel has so far been backed by government policies in the quest for low carbon fuel in the near future and promises to ensure energy security through partially replacing fossil fuels. At present biodiesel is mostly produced by transesterification reaction from oil-seed feedstock and has to conform to ASTM D6751 specifications. Biodiesel sustainability has sparked debate on the pros and cons of biodiesel and the question of food security. The use of waste cooking oil such as palm and coconut oil in diesel engines is more sustainable if they can perform similarly to ordinary diesel fuel (B0). This paper presents the experimental study carried out to evaluate emission and performance characteristics of a multi-cylinder diesel engine operating on waste cooking oil such as 5% palm oil with 95% ordinary diesel fuel (P5) and 5% coconut oil with 95% ordinary diesel fuel (C5). B0 was used for comparison purposes. The results show that there are reductions in brake power of 1.2% and 0.7% for P5 and C5 respectively compared with B0. In addition, reduction of exhaust emissions such as unburned hydrocarbon (HC), smoke, carbon mono-oxide (CO), and nitrogen oxides (NOx) is offered by the blended fuels.  相似文献   

12.
The paper presents the research results pertaining to the renewable biomass charcoal-diesel slurries and their use as alternative fuels for combustion in diesel generating plants. The utilization of charcoal slurry fuel aims to reduce diesel oil consumption and would decrease fossil green house emissions into the atmosphere. The paper investigates the formulation, emulsification, sprays, combustion, injection system operation, and subsequent wear with charcoal-diesel slurries. In the research, cedar wood chips were used for the production of charcoal to be emulsified with diesel oil. The slurry’s viscosity of 27 cP achieved the target (<100 cP) and gave prospects of good spray atomization and while maintaining a high calorific value. Thermal analysis studies found that cedar wood will oxidize about 75% of its original mass by 450 °C. Charcoal slurry displayed a high vaporization rate of 75% by wt. at 300 °C. Engine investigations showed that the top combustion pressure at 1200 rpm and 100% load (7.8 brake mean effective pressure (bmep)) was 79 bar for diesel fuel and 78 bar for the charcoal slurry fuel. From the injection and heat release history was found an ignition delay of 1.7 ms for diesel that increased to 2.1 ms for the slurry fuel. A higher net heat release for charcoal slurry was observed, up to 180 J/crank angle degrees (CAD) compared with the diesel at 145 J/CAD The maximum combustion temperature reached 2300 K for diesel and 2330 K for slurry. The heat fluxes for both fuels have similar values and trends during the entire cycle showing the good compatibility of charcoal slurry with a diesel type combustion and low soot radiation. The exhaust temperatures were about 40-50 °C higher for charcoal slurry at 19° before top dead center (BTDC) injection timing. The engine’s bsfc increased as expected due to the lower heating value of the slurry fuel. The smoke Bosch no. was lower for the slurry fuel at any load, and is believed that the oxygen from the charcoal had a beneficial effect. The measured emissions of slurry fuel were better at 13° BTDC than those of diesel fuel with the original engine settings and the remaining 6-10% oxygen content in the charcoal is thought to have a paramount role in helping the diffusion type combustion and diminishing the particulate matter formation. As the load was increased, the amount of time it took to notice a decline in engine efficiency decreased. This was due to the injector sticking open which was seen by a sharp increase in the exhaust temperature. The internal flow into the injector had the tendency to form deposits on the injector’s seat that were critical to the functionality of the injector. In order to alleviate this problem, a reduced charcoal particle size together with a new injector design were produced resulting in stable engine efficiency at 50% load for a period of 90 min without injector sticking. Even with improvements, the needle’s seat into the injector body showed an accelerated wear 4-8 times faster than that in normal operation with diesel fuel and this cannot be sustained for long operational cycles. The investigations have proven that the new charcoal-diesel slurry can produce adequate sprays and burn with very good results in a direct injection diesel engine. The critical aspect of operation is the internal flow into the injector with the tendency to form deposits and wear in the injector.  相似文献   

13.
Due to the increasing demand for fossil fuels and environmental threat due to pollution a number renewable sources of energy have been studied worldwide. In the present investigation influence of injection timing on the performance and emissions of a single cylinder, four stroke stationary, variable compression ratio, diesel engine was studied using waste cooking oil (WCO) as the biodiesel blended with diesel. The tests were performed at three different injection timings (24°, 27°, 30° CA BTDC) by changing the thickness of the advance shim. The experimental results showed that brake thermal efficiency for the advanced as well as the retarded injection timing was lesser than that for the normal injection timing (27° BTDC) for all sets of compression ratios. Smoke, un-burnt hydrocarbon (UBHC) emissions were reduced for advanced injection timings where as NOx emissions increased. Artificial Neural Networks (ANN) was used to predict the engine performance and emission characteristics of the engine. Separate models were developed for performance parameters as well as emission characteristics. To train the network, compression ratio, injection timing, blend percentage, percentage load, were used as the input parameters where as engine performance parameters like brake thermal efficiency (BTE), brake specific energy consumption (BSEC), exhaust gas temperature (Texh) were used as the output parameters for the performance model and engine exhaust emissions such as NOx, smoke and (UBHC) values were used as the output parameters for the emission model. ANN results showed that there is a good correlation between the ANN predicted values and the experimental values for various engine performance parameters and exhaust emission characteristics and the relative mean error values (MRE) were within 8%, which is acceptable.  相似文献   

14.
Energy security is an important consideration for development of future transport fuels. Among the all gaseous fuels hydrogen or hydroxy (HHO) gas is considered to be one of the clean alternative fuels. Hydrogen is very flammable gas and storing and transporting of hydrogen gas safely is very difficult. Today, vehicles using pure hydrogen as fuel require stations with compressed or liquefied hydrogen stocks at high pressures from hydrogen production centres established with large investments.Different electrode design and different electrolytes have been tested to find the best electrode design and electrolyte for higher amount of HHO production using same electric energy. HHO is used as an additional fuel without storage tanks in the four strokes, 4-cylinder compression ignition engine and two-stroke, one-cylinder spark ignition engine without any structural changes. Later, previously developed commercially available dry cell HHO reactor used as a fuel additive to neat diesel fuel and biodiesel fuel mixtures. HHO gas is used to hydrogenate the compressed natural gas (CNG) and different amounts of HHO-CNG fuel mixtures are used in a pilot injection CI engine. Pure diesel fuel and diesel fuel + biodiesel mixtures with different volumetric flow rates are also used as pilot injection fuel in the test engine. The effects of HHO enrichment on engine performance and emissions in compression-ignition and spark-ignition engines have been examined in detail. It is found from the experiments that plate type reactor with NaOH produced more HHO gas with the same amount of catalyst and electric energy. All experimental results from Gasoline and Diesel Engines show that performance and exhaust emission values have improved with hydroxy gas addition to the fossil fuels except NOx exhaust emissions. The maximum average improvements in terms of performance and emissions of the gasoline and the diesel engine are both graphically and numerically expressed in results and discussions. The maximum average improvements obtained for brake power, brake torque and BSFC values of the gasoline engine were 27%, 32.4% and 16.3%, respectively. Furthermore, maximum improvements in performance data obtained with the use of HHO enriched biodiesel fuel mixture in diesel engine were 8.31% for brake power, 7.1% for brake torque and 10% for BSFC.  相似文献   

15.
Biofuels extracted from non-edible oil is sustainable and can be used as an alternative fuel for internal combustion engines. This study presents the performance, emission and combustion characteristic analysis by using simarouba oil (obtained from Simarouba seed) as an alternative fuel along with hydrogen and exhaust gas recirculation (EGR) in a compression ignition (CI) engine operating on dual fuel mode. Simarouba biofuel blend (B20) was prepared on volumetric basis by mixing simarouba oil and diesel in the proportion of 20% and 80% (v/v), respectively. Hydrogen gas was introduced at the flow rate of 2.67 kg/min, and EGR concentration was maintained at 30% of total air introduction. Performance, combustion and emission characteristics analysis were examined with biodiesel (B20), biodiesel with hydrogen substitution and biodiesel, hydrogen with EGR and were compared with neat diesel operation. Results indicate that BTE of the engine operating with biodiesel B20 was decreased when compared to neat diesel operation. However, introducing hydrogen along with B20 blend into the combustion chamber shows a slight increase in the BTE by 1%. NOx emission was increased to 18.13% with the introduction of hydrogen than that of base fuel (diesel) operation. With the introduction of EGR, there is a significant reduction in NOx emission due to decrease in in-cylinder temperature by 19.07%. A significant reduction in CO, CO2, and smoke emissions were also noted with the introduction of both hydrogen and EGR. The ignition delay and combustion duration were increased with the introduction of hydrogen, EGR with biodiesel than neat diesel operation. Hence, the proposed biodiesel B20 with H2 and EGR combination can be applied as an alternative fuel in CI engines.  相似文献   

16.
An investigational analysis was performed to assess the effect of diethyl ether (DEE) that acts as an oxygenated additive in Jatropha biodiesel and diesel fuel blends on the performance enhancement and emission reduction of a variable compression ratio (CR) diesel engine. The DEE (10% vol) is added to different concentration levels of Jatropha biodiesel (B5, B10, and B20). The Jatropha biodiesel (JME) is prepared by the transesterification reaction and DEE is prepared through acid distillation of ethanol. The various tests were conducted by varying the loads at 25%, 50%, 75%, and 100% (3, 6, 9, and 12 kg). The DEE was entirely miscible with diesel and Jatropha biodiesel, the addition of DEE increases the cetane and calorific value, kinematic viscosity of the fuel blends compared with neat diesel or Jatropha biodiesel. The results illustrate that at higher loads and CRs, the engine performance parameters such as brake thermal efficiency enhances and reduces the brake-specific fuel consumption for DEE-Jatropha biodiesel-diesel fuel blends. Blend A3 (10% DEE + 20% JME + 70% diesel) demonstrated an overall improvement in the engine performance parameters and emission characteristics compared with A1, A2, and diesel fuel blends. It is concluded that the DEE-JME-diesel fuel blend is a promising source of fuel for diesel engine at maximum load.  相似文献   

17.
The partial oxidation (POx) reforming of Ultra Low Sulphur-Diesel (ULSD), rapeseed methyl ester (RME) - biodiesel and Fischer–Tropsch synthetic diesel fuels (SD) were studied by using a fixed-bed reactor. The ease of reforming the three fuels was first examined at different O/C feed ratios at constant gas hourly space velocity (GHSV) of 35 k h−1 over a prototype monolith catalyst (1%Rh/CeO2–ZrO2). The hydrocarbon species (C1–C6) produced in the reformer were analyzed using direct gas injection gas chromatography mass spectrometry (GC-MS). Under the same O/C ratios for 35 k h−1 the fuels conversion and process efficiency was dependent on the fuel type, and followed the general trend: SD > biodiesel > ULSD. The GC-MS analysis shows that both, biodiesel and ULSD diesel produced significantly higher amounts of alkenes compared to SD fuel. Fuel with relatively high aromatics content such diesel can be efficiently reformed to syngas over the catalyst used in this study but the reformer operating range (e.g. O/C ratio and space velocity) is limited compared to paraffinic fuels such as FT-SD. At increased GHSV of 45 k h−1 and O/C = 1.75, the diesel fuel conversion efficiency to syngas (H2 and CO) was improved significantly and the formation of intermediate species such as methane, ethylene, and propylene was reduced considerably as a result of the increased peak reaction temperatures. The reduced HC species and increased H2 concentration in the reactor product gas from the reforming of FT-SD fuel can provide significant advantages to the IC engine applications.  相似文献   

18.
The biodiesel (fatty acid methyl esters, FAME) was prepared by transesterification of the mixed oil (soybean oil and rapeseed oil) with sodium hydroxide (NaOH) as catalyst. The effects of mole ratio of methanol to oil, reaction temperature, catalyst amount and reaction time on the yield were studied. In order to decrease the operational temperature, a co-solvent (hexane) was added into the reactants and the conversion efficiency of the reaction was improved. The optimal reaction conditions were obtained by this experiment: methanol/oil mole ratio 5.0:1, reaction temperature 55 °C, catalyst amount 0.8 wt.% and reaction time 2.0 h. Under the optimum conditions, a 94% yield of methyl esters was reached ∼94%. The structure of the biodiesel was characterized by FT-IR spectroscopy. The sulfur content of biodiesel was determined by Inductively Coupled Plasma emission spectrometer (ICP), and the satisfied result was obtained. The properties of obtained biodiesel from mixed oil are close to commercial diesel fuel and is rated as a realistic fuel as an alternative to diesel. Production of biodiesel has positive impact on the utilization of agricultural and forestry products.  相似文献   

19.
Feasibility of using high percentage of ethanol in diesel–ethanol blends, with biodiesel as a co-solvent and properties enhancer has been investigated. The blends tested are D70/E20/B10 (blend A), D50/E30/B20 (blend B) D50/E40/B10 (blend C), and Diesel (D100). The blends are prepared to get maximum percentage of oxygen content but keeping important properties such as density, viscosity and Cetane index within acceptable limits. Experiments are conducted on a multicylinder, DI diesel engine, whose original injection timing was 13° CA BTDC. The engine did not run on blends B and C at this injection timing and it was required to advance timing to 18° and 21° CA BTDC to enable the use of blends B and C respectively. However advancing injection timing almost doubled the NO emissions and increased peak firing pressure. The Pθ and net heat release diagrams shows that the combustion process of these blends delayed at low loads but approaches to the diesel fuel at high loads. The comparison of blend results with baseline diesel showed that brake specific fuel consumption increased considerably, thermal efficiency improved slightly, smoke opacity reduced remarkably at high loads. NO variation depends on operating conditions while CO emissions drastically increased at low loads. Blend B which replaced 50% diesel and having oxygen content up to 12.21% by weight has given satisfactory performance for steady state running mode up to 1600 RPM however, it does not showed any benefit on peak smoke emission during free acceleration test.  相似文献   

20.
Internal combustion engines continue to dominate in many fields like transportation, agriculture and power generation. Among the various alternative fuels, hydrogen is a long-term renewable and less polluting fuel (Produced from renewable energy sources). In the present experimental investigation, the performance and emission characteristics were studied on a direct injection diesel engine in dual fuel mode with hydrogen inducted along with air adopting carburetion, timed port and manifold injection techniques. Results showed that in timed port injection, the specific energy consumption reduces by 15% and smoke level by 18%. The brake thermal efficiency and NOX increases by 17% and 34% respectively compared to baseline diesel. The variation in performance between port and manifold injection is not significant. The unburnt hydrocarbons and carbon monoxide emissions are lesser in port injection. The oxides of nitrogen are higher in hydrogen operation (both port and manifold injection) compared to diesel engine. In order to reduce the NOX emissions, a selective catalytic converter was used in hydrogen port fuel injection. The NOX emission reduced upto a maximum of 74% for ANR (ratio of flow rate of ammonia to the flow rate of NO) of 1.1 with a marginal reduction in efficiency. Selective catalytic reduction technique has been found to be effective in reducing the NOX emission from hydrogen fueled diesel engines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号