首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对褐煤在小型电加热鼓泡流化床和小型电加热循环流化床中燃烧时的汞迁移特性进行了对比试验研究,重点考察了不同燃烧工况对汞迁移特性的影响。试验结果表明,炉膛温度和给煤量增加,鼓泡流化床和循环流化床的烟气总汞HgT均增加,飞灰颗粒汞含量Hg(p)均减少,并且循环流化床的烟气总汞HgT值均低于相同燃烧工况的鼓泡流化床值,循环流化床的飞灰颗粒汞含量Hg(p)值均高于相同燃烧工况的鼓泡流化床的值;流化风速增加,循环流化床的烟气总汞HgT减少,飞灰颗粒汞含量Hg(p)增加,鼓泡流化床烟气总汞HgT增加,飞灰颗粒汞含量Hg(p)减少。  相似文献   

2.
The present work reports studies on the mixing and combustion characteristics of cotton stalk with 10–100 mm in length in FBC. Experiments on a cold model show that cotton stalk cannot fluidize, and adding bed material can improve the fluidization condition. Cotton stalk can mix well with 0.6–1 mm alumina at fluidization number N = 3–7. However, when the fluidization number is higher more than 7, the mixing bed will exist a little segregation comparing with N = 3–7. Thermogravimetric experiments show that cotton stalk can be ignited easily at a lower temperature, and its devolatilization and combustion are quick. Fluidized-bed combustion of cotton stalk was tested in a 0.2 MWth test facility. According to the temperature distribution along the bed height, when the primary and secondary air is adapted cotton stalk can be burned stably in the fluidized bed. During pure cotton stalk combustion tests, silica sand and alumina are used as bed material to compare their agglomeration characteristics. SEM/EDX analysis on agglomerate samples after combustion about 38 h suggests that the high alkali metals content causes the formation of the coating around silica sand particles. The coating consists of compounds with low-melting temperature results in agglomeration of silica sand particles. By contrast, alumina is difficult to react with alkali metals from biomass ash, and the agglomeration of alumina was not found at 910 °C. It is found that alumina is more favorable than silica sand particle for use in a fluidized bed in cotton stalk combustion.  相似文献   

3.
高温流化床的流化特性及结焦非流化行为   总被引:3,自引:0,他引:3  
在 8 0 mm× 30 mm和 80 mm× 10 mm石英流化床中 ,以低温粘结的高密度聚乙烯和聚丙烯 ,高温粘结的玻璃珠为实验物料 ,研究了高温流化床的流化特性及高温下物料结焦产生的非流化行为。结果表明 ,在本文实验条件下 ,Geldart A、B类高温表面粘结物料 ,床层温度小于其最小粘结温度时 ,床层温度增大 ,颗粒的最小流化速度减小 ;Geldart D类高温表面粘结物料的最小流化速度随温度增加而增大。得出了不同温度下颗粒最小流化速度预测式。床层温度大于最小粘结温度时 ,流化床需在较高的表观气速下才能保持流化 ,床层温度愈高床层流化所需的表观气速越大。研究同时发现 ,颗粒物料的粒径减小 ,流化颗粒的最小粘结温度减小。  相似文献   

4.
This study compares the characteristics of particulate matter (PM) in the hot product gas from three different atmospheric fluidized bed biomass gasifiers: a bubbling fluidized bed (BFB) gasifier, a circulating fluidized bed (CFB) gasifier, and an indirect BFB gasifier (the latter integrated with a CFB boiler). All gasifiers displayed a bimodal particle mass size distribution with a fine mode in the <0.5 μm size range and a coarse mode in the >0.5 μm size range. Compared with the mass concentration of the coarse mode the mass concentration of the fine mode was low in all gasifiers. For both the BFB and CFB gasifiers the fine-mode PM had a similar inorganic composition, indicating an origin from the ash and the magnesite bed material used in both gasifiers. In the indirect BFB gasifier the fine-mode PM was instead dominated by potassium and chlorine, and the tar fraction properties evoked tar condensation in the sampling system that affected mainly the fine-mode PM. The coarse-mode PM in the BFB gasifier was dominated by char fragments abraded from the pyrolyzed wood pellets. In the CFB gasifier the coarse-mode PM was mainly ash and magnesite bed material that passed through the process cyclone. In the indirect BFB gasifier the coarse-mode PM was mainly ash, probably originating both from the BFB gasifier and the CFB boiler.  相似文献   

5.
糠醛渣在流化床中燃烧特性的试验研究   总被引:4,自引:0,他引:4  
介绍了糠醛渣生物质燃料的工业分析,临界流化程度,着火温度,与煤掺烧时的烧结特性,灰成分分析以及热天平分析,重点研究了糠醛渣燃烧后灰成分析及热重分析,解释了没有烧结的根本原因在于,糠醛渣燃烧后形成的灰中,钾盐主要以硫酸盐物质存在,熔点较高所致,试验发现,糠醛渣中氯含量较高,燃烧后灰中氯含量很低,说明主要以HCl气体析出,同时糖醛渣中含有呋喃甲醛,当然烧不充分时将会产生多氯二苯并呋喃(PCDFs-二恶英),提出合理的燃烧温度及停留时间,试验结果为设计流化床糠醛渣锅炉奠定了基础。  相似文献   

6.
对平顶山洗煤泥的燃料特性以及结渣特性进行了研究,并在小型电加热流化床试验台上进行了结团燃烧试验,探讨了煤泥的结团强度随粒径、床温、停留时间等参数的变化关系。试验结果表明,粒块状煤泥具有良好的结团特性,在整个燃烧过程中都有较高的结团强度,采用异重结团流化床燃烧煤泥切实可行,从而为组织大型燃烧试验和锅炉设计提供了可靠有效的理论依据。  相似文献   

7.
Chemical-looping combustion (CLC) is recognized as a promising technique to efficiently and economically capture emitted carbon dioxide in common combustion processes. In this study, the bubbling fluidized bed (BFB) fuel reactor performance of the CLC system was examined through numerical simulation. The reduction reaction performance obtained from conventional BFB fuel reactor and BFB fuel reactor incorporated with internal particle circulation denoted as internal circulation bubbling fluidized bed reactor (ICBFB), were compared under the same fuel flow rate and operating conditions. By using CH4 as fuel and ilmenite as the oxygen carrier, it was found the reduction reaction can be enhanced by using the ICBFB fuel reactor due to particle circulation. The particle circulation increased the mixing and contact time between fuel and oxygen carrier that produced reduction reaction enhancement. Moreover, the simulation results indicated that higher reduction reaction performance can be achieved by higher reduction reaction temperature and initial oxygen carrier volume fraction.  相似文献   

8.
Fluidized bed combustion technology has been widely used as the new, flexible, multi-fuel boiler for waste combustion and energy recovery from low grade fuels. However, problems such as low thermal efficiency, high emissions, bed agglomeration etc. are still encountered in the operation of fluidized beds. Valuable experiences were gained from two case studies recently conducted regarding wastes combustion in industrial scale fluidized beds.In the first case, the performance of a fluidized bed combustor for energy recovery from oil sludge was evaluated during the commissioning trials. Apart from the sludge characterization and bed material analysis, the combustion efficiency, solid flow balance and on stack emission of CO, SOx and NOx were investigated, as well as the fluidization quality. Although the system was operated with good combustion efficiency (>99.9%), sulfur dioxide emission (>1000 ppm) was found to be substantially higher than the allowable discharge limit. It was recommended to increase the limestone feed rate in order to meet the SO2 emission standard, and subsequently, installation of a cyclone is suggested to remove the potentially significant increase in ash and fine particles.The second case study focused on the bed agglomeration observed in a fluidized bed incinerator where a burning blend of three wastes (i.e. carbon soot, biosludge and fuel oil) is involved. To understand the mechanisms and related chemistry, several analytical approaches are employed to identify the bed materials (fresh sand and degrader sand) and the clinkers formed from full scale incinerator tests. The formation of clinker is believed to follow the mechanism of partial melting and/or reactive liquid sintering. The effects of temperature and blending ratio are tested in a muffle furnace. Carbon soot is believed to be more susceptible than the other two fuels. Thermodynamic multi-phase multi-component equilibrium (TPCE) calculations predict that the main low melting point species are predominant under the oxidizing condition, suggesting that reducing conditions might be favorable to restrain bed agglomeration. This study provides valuable information for better understanding of the chemistry related to clinker formation; it also helps in developing methods for control and possible elimination of the bed agglomeration problem for the design fuels.  相似文献   

9.
This paper summarizes the results of an experimental study on cotton stalk (CS) combustion in a circulating fluidized bed. The mixing and fluidizing characteristics of binary mixture of CS with 10–100 mm in length and alumina bed material with a certain size distribution in a cold test facility were studied. The results show that CS by itself cannot fluidize, and adding inert bed material can improve the fluidization condition. CS can mix well with alumina at fluidization number N = 3–7. As N is more than 7, there will exist a little more segregation. The study concerning combustion characteristics of pure CS was performed on a circulating fluidized bed with a heat input of 0.5 MW. The effects of fluidizing velocity, secondary air flow and gas flow to the loop seal on the bed temperature profiles were investigated. Although there is a little more segregation at N higher than 7 in the cold tests, the hot experimental results indicate that slight segregation has little effect on the steady combustion of the dense region. In this study, the concentrations of major gaseous pollutants (CO, SO2 and NO) in flue (stack) gas were measured.  相似文献   

10.
This study examined the effects of variations in alkali and alkaline earth metal content, bed material diameter, static bed height and gas velocity in a fluidized-bed combustion process to understand the distribution of heavy metals in bottom ash after agglomeration/defluidization. A smaller diameter bed material increased the relative abundance of small particle sizes in the bottom ash due to attrition and thermal impact at high temperature. The addition of Na led to an increase in the large particle abundance of the bottom ash, likely due to the formation of a eutectic with a low melting point, causing agglomeration. The addition of Ca inhibited the agglomeration/defluidization and increased the abundance of large particles in the bottom ash.In general, heavy metal concentrations increased when the bottom ash size was smaller than 0.59 mm and larger than 0.84 mm. Regarding the different fluidization parameters, the bottom ash had the lowest concentration of heavy metals at 1.5 Umf, an H/D of 2.1 and a bed material (silica) particle size of 0.645 mm. The concentrations of heavy metals in the bottom ash after Ca addition were higher than of those without Na or with Na only. Addition of Ca prolonged the operation time of fluidization and increased the feed quantity of heavy metal, helping the bed material adsorb more heavy metal. Therefore, the addition of Ca not only prolonged the fluidization time, reducing agglomeration/defluidization, but also resulted in a higher adsorption of heavy metals by the bed material, reducing their emission.  相似文献   

11.
在循环流化床实验台上对石油焦的结焦特性进行了实验研究。研究结果表明:石油焦属易结焦燃料;结焦的发生受床温、宝塔速度、烟气中物料浓度以及受热面壁温的影响,较高的空塔速度和物料浓度有助于避免结焦,在相同的操作条件下,结焦最低壁温与床温之和趋于一个常数。  相似文献   

12.
循环流化床脱硫装置的文丘里管直流流化速度随锅炉负荷的变化而变化,这会影响脱硫效率。本文提出了适应锅炉负荷变化的直/旋流复合流化方式,并用PDA测量系统对这种流化方式的气固两相流场进行测试,得到了循环流化床内旋流风率和假想切圆半径改变时气固切向速度和浓度分布。试验表明,复合流化循环流化床的切向速度随着半径增大而升高,气固切向滑移速度比直流流化增大,脱硫塔内的浓度增加,内循环增强,脱硫效率随之提高。  相似文献   

13.
循环流化床(CFB)锅炉炉内的燃烧及传热与炉内床料的状态密切相关,而炉内床料主要是由燃煤含有的矿物组分经过燃烧、爆裂和磨耗过程形成的。文中对6种煤样在固定床燃烧后,使用可视化显微仪,获取了灰颗粒的微观形貌特征,根据灰颗粒的机械强度和耐磨性能的不同,将灰颗粒定义为3类不同性质的灰。以此为基点,采用固定床燃烧后冷态振动筛分和流化床实验台热态流化后筛分的方法,研究了不同燃烧温度下升温速率对灰颗粒粒径变化的影响,以及不同燃烧温度下燃烧时间对灰颗粒粒径变化的影响,推演了不同煤样在燃烧过程中的演化特征。结果表明:3类灰颗粒在不同的燃烧温度和时间的演化过程存在明显的不同,从而为预测循环流化床中的床料粒径分布提供了理论依据。  相似文献   

14.
Some aspects of fluidized bed combustion of paddy husk   总被引:1,自引:0,他引:1  
Some agricultural wastes—for example, bagasse, paddy husk, etc.—are frequently used as fuels, paddy husk appearing, in particular, to be quite suitable for fluidized bed combustion. The conventional method of combustion of paddy husk in grate-type furnaces is slow and inefficient.

This paper reports certain aspects of the fluidized bed combustion of paddy husk. Fluidized bed combustion was carried out by feeding husk in a bed of sand particles. The unexpanded bed height was 10 cm and the size of the sand particles, 351–420 μm. The superficial velocity of the ambient fluidization air through the bed ranged from 11·1 to 22·2 m/min.

A combustion intensity of about 530 kg/h/m2 of distributor area could be achieved. This is about 7·5 times higher than the maximum combustion intensity possible in a grate-type furnace per unit grate area. The efficiency of combustion, which ranged from 81 to 98 per cent was found to increase with the air flow rate. There was significant carry-over of inert sand particles from the bed under conditions of high air flow rate.

Combustion intensity increased as the bed height rose from 10 cm to 15 cm, but increased sand entrainment also occurred.  相似文献   


15.
在冷态鼓泡流化床实验台上,针对不同流化数、静床高及床料颗粒粒径下测得的风帽压力波动信号,采用小波模极大值法获取信号的小波局部极大模线,分析了流化数、静床高及床料颗粒粒径对鼓泡流化床风帽压力波动信号奇异性的影响.结果表明:风帽压力波动信号的局部奇异性随着流化数的减小、静床高的增加和床料颗粒粒径的增大而有所增强,说明通过小波局部极大模线可以对风帽压力波动信号的局部奇异性进行描述,并且能够反映鼓泡流化床流化数、静床高和床料颗粒粒径变化时床内气固流动状态的变化.  相似文献   

16.
在一热态流化床试验台上,对热烟气床下点火启动条件下风帽的温度分布了试验研究,并考察了风帽所用材质的耐热性。鉴于目前流化床锅炉逐步采用床下点火启动方式,该项研究具有很大的实用价值和指导意义。  相似文献   

17.
周明哲 《节能技术》2012,30(4):327-329,334
本文基于气固两相欧拉-欧拉双流体模型,对多孔布风鼓泡流化床内气固两相流流动特性进行了数值模拟,研究了床内压力分布,气泡的运动行为,以及气相和颗粒相速度的分布情况,并将模拟结果与相应实验数据进行比较。结果表明所用模型能较好的预测流化床内气固两相流的流动特性,模拟结果与实验结果吻合较好。  相似文献   

18.
油页岩流化床燃烧N_2O生成特性   总被引:3,自引:1,他引:2       下载免费PDF全文
在一个直径20mm,高450mm小型热态流化床燃烧试验台上,进行了不同运行参数对油页岩流化床燃烧过程中N2O排放特性影响的试验研究。试验研究表明,提高燃烧温度、降低过量空气系数、提高循环倍率和进行炉内石灰石脱硫等可以降低N2O的生成量,为油页岩循环流化床锅炉的设计与运行提供了基础数据。  相似文献   

19.
A new method to measure the radiative heat transfer in fluidized beds was presented. Experiments were carried out on a 0.8 th−1 fluidized bed combustion boiler. The residual slag of fired coal was operated in a fluidized bed at room temperature. As the radiative heat transfer at room temperature is insignificant, its contribution at high temperatures might be obtained by the comparison of experimental results at high and low temperatures. On experimental study, a radiative contribution was given as a function of bed temperature and particle size. The results were compared with those in other references.  相似文献   

20.
Thermochemical conversion by gasification process is one of the most relevant technologies for energy recovery from solid fuel, with an energy conversion efficiency better than other alternatives like combustion and pyrolysis. Nevertheless, the most common technology used in the last decades for thermochemical conversion of solid fuel through gasification process, such as coal, agriculture residues or biomass residues are the fluidized bed or bubbling fluidized bed system. For these gasification technologies, an inert bed material is fed into reactor to improve the homogenization of the particles mixture and increase the heat transfer between solid fuel particles and the bed material. The fluidized bed reactors usually operate at isothermal bed temperatures in the range of 700–1000 °C, providing a suitable contact between solid and gas phases. In this way, chemical reactions with high conversion yield, as well as an intense circulation and mixing of the solid particles are encouraged. Moreover, a high gasification temperature favours carbon conversion efficiency, increasing the syngas production and energy performance of the gasifier. However, the risk of eutectic mixtures formation and its subsequent melting process are increased, and hence the probability of bed agglomeration and the system collapse could be increased, mainly when alkali and alkaline earth metals-rich biomasses are considered. Generally, bed agglomeration occurs when biomass-derived ash reacts with bed material, and the lower melting temperature of ash components promotes the formation of highly viscous layers, which encourages the progressive agglomerates creation, and consequently, the bed collapse and system de-fluidization. Taking into account the relevance of this topic to ensure the normal gasification process operating, this paper provides several aspects about bed agglomeration, mostly for biomass gasification systems. In this way, chemistry and mechanism of bed agglomeration, as well as, some methods for in-situ detection and prediction of the bed agglomeration phenomenon are reviewed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号