首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
The non-storage characteristics of electricity and the increasing fuel costs worldwide call for the need to operate the systems more economically. Economic dispatch (ED) is one of the most important optimization problems in power systems. ED has the objective of dividing the power demand among the online generators economically while satisfying various constraints. The importance of economic dispatch is to get maximum usable power using minimum resources. To solve the static ED problem, honey bee mating algorithm (HBMO) can be used. The basic disadvantage of the original HBMO algorithm is the fact that it may miss the optimum and provide a near optimum solution in a limited runtime period. In order to avoid this shortcoming, we propose a new method that improves the mating process of HBMO and also, combines the improved HBMO with a Chaotic Local Search (CLS) called Chaotic Improved Honey Bee Mating Optimization (CIHBMO). The proposed algorithm is used to solve ED problems taking into account the nonlinear generator characteristics such as prohibited operation zones, multi-fuel and valve-point loading effects. The CIHBMO algorithm is tested on three test systems and compared with other methods in the literature. Results have shown that the proposed method is efficient and fast for ED problems with non-smooth and non-continuous fuel cost functions. Moreover, the optimal power dispatch obtained by the algorithm is superior to previous reported results.  相似文献   

2.
This paper presents a novel modified interactive honey bee mating optimization (IHBMO) base fuzzy stochastic long-term approach for determining optimum location and size of distributed energy resources (DERs). The Monte Carlo simulation method is used to model the uncertainties associated with long-term load forecasting. A proper combination of several objectives is considered in the objective function. Reduction of loss and power purchased from the electricity market, loss reduction in peak load level and reduction in voltage deviation are considered simultaneously as the objective functions. First, these objectives are fuzzified and designed to be comparable with each other. Then, they are introduced into an IHBMO algorithm in order to obtain the solution which maximizes the value of integrated objective function. The output power of DERs is scheduled for each load level. An enhanced economic model is also proposed to justify investment on DER. An IEEE 30-bus radial distribution test system is used to illustrate the effectiveness of the proposed method.  相似文献   

3.
In recent years, various heuristic optimization methods have been proposed to solve economic dispatch (ED) problem in power systems. This paper presents the well-known power system ED problem solution considering valve-point effect by a new optimization algorithm called artificial bee colony (ABC). The proposed approach has been applied to various test systems with incremental fuel cost function, taking into account the valve-point effects. The results show that the proposed approach is efficient and robust when compared with other optimization algorithms reported in literature.  相似文献   

4.
In this paper, a dynamic multiobjective particle swarm optimization (DMOPSO) method is presented for the optimal design of hybrid renewable energy systems (HRESs). The main goal of the design is to minimize simultaneously the total net present cost (NPC) of the system, unmet load, and fuel emission. A DMOPSO‐simulation based approach has been used to approximate a worthy Pareto front (PF) to help decision makers in selecting an optimal configuration for an HRES. The proposed method is examined for a case study including wind turbines, photovoltaic (PV) panels, diesel generators, batteries, fuel cells, electrolyzer, and hydrogen tanks. Well‐known metrics are used to evaluate the generated PF. The average spacing and diversification metrics obtained by the proposed approach are 1386 and 4656, respectively. Additionally, the set coverage metric value shows that at least 67% of Pareto solutions obtained by DMOPSO dominate the solutions resulted by other reported algorithms. By using a sensitivity analysis for the case study, it is found that if the PV panel and wind turbine capital cost are decreased by 50%, the total NPC of the system would be decreased by 18.8 and 3.7%, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The current research aims to present an inclusive review of latest research works performed with the aim of improving the efficiency of the hybrid renewable energy systems (HRESs) by employing diverse ranges of the optimization techniques, which aid the designers to achieve the minimum expected total cost, while satisfying the power demand and the reliability. For this purpose, a detailed analysis of the different classification drivers considering the design factors such as the optimization goals, utilized optimization methods, grid type as well as the investigated technology has been conducted. Initial results have indicated that among all optimization goals, load demand parameters including loss of power supply probability (LPSP) and loss of load probability (LLP), cost, sizing (configuration), energy production, and environmental emissions are the most frequent design variables which have been cited the most. Another result of this paper indicates that almost 70% of the research projects have been dedicated towards the optimization of the off-grid applications of the HRESs. Furthermore, it has been demonstrated that, integration of the PV, wind and battery is the most frequent configuration. In the next stage of the paper, a review concerning the sizing methods is also carried out to outline the most common techniques which are used to configure the components of the HRESs. In this regard, an analysis covering the optimized indicators such as the cost drivers, energy index parameters, load indicators, battery’s state of charge, PV generator area, design parameters such as the LPSP, and the wind power generation to load ratio, is also performed.  相似文献   

6.
In recent years, renewable energy can be seen as one of the important prospect of today's research, as it is likely to enlighten the lives of millions of people by fulfilling demand of electricity in their daily life. The present work focuses on the development of optimal hybrid energy system sizing model based on comparative analysis of particle swarm optimization, genetic algorithm and Homer software for energy index ratio of 1. The model also incorporates renewable fraction, emissions of carbon di oxide from diesel generator, net present cost and cost of energy. The system is developed to supply the demand of 7 un-electrified villages of Dhauladevi block of Almora district in Uttarakhand, India with the help of the available resources of solar, hydro, biomass and biogas energy along with the addition of diesel generator, for meeting out the energy deficit. From the optimization results, minimum cost of energy and maximum renewable fraction are obtained as 5.77 Rs/kWh and 92.6% respectively.  相似文献   

7.
Renewable generating systems are alternative to produce electric energy in a clean manner. However, the high costs of the constituents limit their broad use. Thus, sizing is an important issue in the renewable generating systems design, in order to reach an efficient relationship between cost and benefit. Likewise, the random nature of the sources makes the sizing a complex task with regard to a conventional system. This paper is focused on calculate the optimal size of a wind-photovoltaic-fuel cell system to meet the power demand of an isolated residential load located in the south-east region of Mexico (Chetumal city 18°31′21.4″N 88°16′11.3″W), with a solar radiation range from 0 to 0.75 kW/m2 and wind speed range from 5 to 7.8 m/s. Swarm intelligence techniques have been successfully applied in solving many combinatorial optimization problems in which the objective space possesses many local optimal solutions. This work employs the Particle Swarm Optimizer (PSO) algorithm to search the optimal sizing for the power plant minimizing the total costs of the system; as a metaheuristic procedure, the PSO was able to find the best configuration regardless the lack of a deep knowledge of the problem. Compared against the Differential Evolution (DE) technique, the PSO performance is faster and able to provide a configuration that saves around 10% of the total cost of the hybrid system.  相似文献   

8.
In this paper, the objective of minimum load balancing index (LBI) for the 16-bus distribution system is achieved using bacterial foraging optimization algorithm (BFOA). The feeder reconfiguration problem is formulated as a non-linear optimization problem and the optimal solution is obtained using BFOA. With the proposed reconfiguration method, the radial structure of the distribution system is retained and the burden on the optimization technique is reduced. Test results are presented for the 16-bus sample network, the proposed reconfiguration method has effectively decreased the LBI, and the BFOA technique is efficient in searching for the optimal solution.  相似文献   

9.
Green hydrogen energy is a natural substitute for fuel-based energy and it increases a country's long-term energy safety. Pakistan has been a victim of a severe energy crisis for the past few decades. In this context, this research addresses green hydrogen generation and renewable energy supply (i.e., wind, solar, biomass, public waste, geothermal and small hydropower) as an alternate energy source in Pakistan. The assessment is carried out through a two-step framework (i.e., Fuzzy-AHP and non-parametric DEA). Results show that Pakistan has abundant renewable power capacity from wind, which the light-duty transport in the country can opt. Almost 4.89 billion gallons of fuel are consumed annually in Sindh, whereas Punjab uses up around 6.92 billion gallons of fuel annually, which need to be substituted with 1.63 billion kg and 2.31 billion kg of wind-produced hydrogen, respectively. It has been discovered that solar and wind energy attain the same criterion of weights (i.e., 0.070) in-line with the commercial potential criterion. Besides, wind-generated power is ideal for green hydrogen generation in Pakistan, and the subsequent choice for green hydrogen energy is small hydropower and solar, which are also good for green hydrogen generation in the country. Hence, this research offers a solid recommendation for the use of wind energy, which is ideal for the production of Green Hydrogen energy in the country.  相似文献   

10.
This paper presents an interactive fuzzy satisfying method based on Hybrid Modified Honey Bee Mating Optimization (HMHBMO). Its purpose is to solve the Multi-objective Optimal Operation Management (MOOM) problem which can be affected by Fuel cell power plants (FCPPs). Minimizing total electrical energy losses, total electrical energy cost, total pollutant emission produced by sources and deviation of bus voltages are the objective functions in this method. A new interactive fuzzy satisfying method is presented to solve the multi-objective problem by assuming that the decision-maker (DM) has fuzzy targets for each of the objective functions. Through the interaction with the DM, the fuzzy goals are quantified by eliciting the corresponding membership functions. Considering the current solution, the DM updates the reference membership values until the best solution can be obtain. The MOOM problem is modeled as a mixed integer nonlinear programming problem. Therefore, evolutionary methods can be used to solve this problem since they are independence of objective function’s type and constraints. Recently researchers have presented a new evolutionary method called Honey Bee Mating Optimizations (HBMO) algorithm. Original HBMO often converges to local optima and this is a disadvantage of this method. In order to avoid this shortcoming we propose a new method. This method improves the mating process and also combines the modified HBMO with a Chaotic Local Search (CLS). Numerical results on a distribution test system have been presented to illustrate the performance and applicability of the proposed method.  相似文献   

11.
This paper presents a simultaneous multiobjective optimization of a direct-drive permanent magnet synchronous generator and a three-blade horizontal-axis wind turbine for a large scale wind energy conversion system. Analytical models of the generator and the turbine are used along with the cost model for optimization. Three important characteristics of the system i.e., the total cost of the generator and blades, the annual energy output and the total mass of generator and blades are chosen as objective functions for a multi-objective optimization. Genetic algorithm (GA) is then employed to optimize the value of eight design parameters including seven generator parameters and a turbine parameter resulting in a set of Pareto optimal solutions. Four optimal solutions are then selected by applying some practical restrictions on the Pareto front. One of these optimal designs is chosen for finite element verification. A circuit-fed coupled time stepping finite element method is then performed to evaluate the no-load and the full load performance analysis of the system including the generator, a rectifier and a resistive load. The results obtained by the finite element analysis (FEA) verify the accuracy of the analytical model and the proposed method.  相似文献   

12.
The future energy system in community level should be more ‘smart’ to secure reliability, enhance market service, minimize environmental impact, reduce costs and improve the use of renewable energy source (RES). Therefore, this paper proposes an energy integration system – smart hybrid renewable energy for communities (SHREC). It considers both thermal (heating and cooling) and electricity market in a large community level and highlight the interactions between them through utilizing RES, combined heat and power (CHP) and energy storages. A planning model based on CHP modelling is developed for the SHREC system. A linear programming (LP) algorithm is developed to optimize the SHREC system in a weekly period and the results are compared with an existing energy optimization software. We also demonstrate the model in a sample SHREC system during three typical weeks with cold, warm and mid-season weather in the year 2011. The results indicate that the developed modelling and optimization method is more efficient and flexible for the smart hybrid renewable energy systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号