首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
汽油机均质混合气压燃燃烧(HCCI)技术   总被引:1,自引:0,他引:1  
在汽油机普遍采用电控技术,发动机性能得到较大改善的今天,稀薄燃烧技术为汽油机性能的提高提供了广阔的前景。而HCCI燃烧技术,是一种集常规汽油机和柴油机于一体的新概念燃烧。本文在介绍HCCI燃烧技术的基础上,分析了汽油机实施HCCI的可行性,并介绍了HCCI发动机实用化所面临的问题,提出了废气再循控制HCCI燃烧过程的方案等。  相似文献   

2.
均质压燃式(HCCI)燃烧的研究   总被引:10,自引:0,他引:10  
均质压燃式(HCCI)燃烧方式是目前内燃机燃烧领域的研究热点。HCCI燃烧是以预混合燃烧和低温反应为特征的燃烧方式。采用HCCI燃烧方式可以同时有效降低柴油机的NOX和碳烟排放,并提高柴油机的循环热效率。HCCI发动机通常工作在高空燃比和较低的压缩比条件下,工作范围较小,高负荷时功率输出不足。“双模式”HCCI发动机是解决上述问题的有效途径,并成为近期HCCI发动机研究中的热点。  相似文献   

3.
Homogeneous Charge Compression Ignition (HCCI) combustion is a combustion concept which offers simultaneous reductions in both NOx and soot emissions from internal combustion engines. In light of increasingly stringent diesel emissions limits, research efforts have been invested into HCCI combustion as an alternative to conventional diesel combustion. This paper reviews the implementation of HCCI combustion in direct injection diesel engines using early, multiple and late injection strategies. Governing factors in HCCI operations such as injector characteristics, injection pressure, piston bowl geometry, compression ratio, intake charge temperature, exhaust gas recirculation (EGR) and supercharging or turbocharging are discussed in this review. The effects of design and operating parameters on HCCI diesel emissions, particularly NOx and soot, are also investigated. For each of these parameters, the theories are discussed in conjunction with comparative evaluation of studies reported in the specialised literature.  相似文献   

4.
One of the major problems associated with HCCI combustion engine application is lack of direct control for combustion timing. A proposed solution for combustion timing control is using a binary fuel blend in which two fuels with different auto-ignition characteristics are blended at various ratios on a cycle-by-cycle basis.The aim of this research is to investigate the exergy analysis of HCCI combustion when a blended fuel, which consists of n-heptane and natural gas, is used. In order to accomplish this task, a single-zone combustion model has been developed, which performs combustion computations using a complete chemical kinetics mechanism.The study was carried out with different percentages of natural gas in blended fuels and EGR (exhaust gas recirculation) ranging from about 45 to 85 percent and 0 to 40 percent, respectively. The results reveal that, when mass percentage of natural gas increases, exergy destruction is decreased increasing the second-law efficiency. Introducing EGR into the intake charge of dual fuel HCCI engine up to some stage (optimum value) enhances the second-law performance of the engine in spite of a reduction in work.  相似文献   

5.
废气再循环对二甲基醚均质压燃燃烧过程影响的试验研究   总被引:4,自引:1,他引:4  
在一台单缸发动机上进行了废气再循环(EGR)对二甲基醚(DME)均质压燃(HCCI)燃烧过程影响的试验研究。结果表明,EGR比例小于20%对运行最大负荷工况范围影响不大;采用高比例EGR可以拓宽DME均质压燃运行工况范围,随着EGR率增大,HCCI运行的最大负荷工况增大,着火燃烧时刻推迟,燃烧放热率降低,缸内最大爆发压力降低,发动机热效率增大;EGR率小于75%,HC排放略有降低或相当,EGR率为75%时,HC排放显著增加;EGR率大于25%,随着EGR率增加,CO排放增大,小负荷工况尤其明显,在中高负荷工况,EGR率对CO排放影响较小。  相似文献   

6.
均质混合气压燃(HCCI)高负荷拓展是内燃机燃烧领域的一个难题,火花点火激发均质压燃(SICI)组合燃烧可以作为汽油机中高负荷区域的高效燃烧模式,实现HCCI与火花点火(SI)燃烧的衔接。在试验台架上通过改变配气相位及外部EGR循环实现了内外EGR组合策略下的SICI组合燃烧,研究了EGR策略对SI-CI组合燃烧的影响。结果表明,内部EGR有利于压燃的发生,随着内部EGR的增加,压燃比例增加,燃烧速度加快,循环波动减小,CO和UHC排放减少,SICI组合燃烧能够在更高的EGR率条件下稳定工作,理论空燃比SICI组合燃烧的工况范围得到拓展。  相似文献   

7.
均质压燃(HCCI)燃烧过程控制方式的研究   总被引:1,自引:0,他引:1  
均质压燃(HCCI)燃烧方式是目前内燃机燃烧领域的研究焦点。因HCCI发动机的燃烧过程主要由可燃混合气的化学动力学所控制,故很难在全负荷范围内控制它的着火时刻和燃烧放热率。因此,HCCI燃烧过程的控制成为HCCI研究热点。本文根据一些控制HCCI发动机燃烧过程的研究结果对其进行阐述。  相似文献   

8.
EGR作为控制HCCI燃烧的手段之一,影响着燃烧始点和放热规律.本文考虑EGR因素建立HCCI燃烧的化学模型和计算模型,研究不同EGR率对HCCI燃烧始点的影响;并结合分段韦伯函数,对不同EGR率的HCCI放热率进行模拟研究.  相似文献   

9.
与传统汽油机火花点火燃烧和传统柴油机压燃燃烧的燃烧方式不同,均质充量压燃燃烧(HCCI)是一种新的燃烧方式,由于其同时具有高热效率和低NOx排放的特点,已经成为发动机领域的一个重要研究方向。但是由于这种燃烧方式本身存在的一些问题,使其实用化推广受到了很大限制。本文主要介绍了当前HCCI燃烧面临的诸多挑战以及研究人员对其实用化推广所作出的努力。  相似文献   

10.
甲醇添加剂对柴油类燃料HCCI着火与燃烧的影响   总被引:1,自引:0,他引:1  
HCC I燃烧不能大量应用到商业产品的核心障碍是其着火时刻和燃烧速率的控制问题.为此,研究了甲醇对柴油类燃料(正庚烷)均质压缩自燃特性的抑制效果及其对燃烧持续期和排放特性的影响.在正庚烷中加入1000/~4000/的甲醇(体积分数),通过气口喷射进入单缸发动机实现HCC I燃烧.考察了几种燃料在1 800 r/m in各种当量比下的燃烧特性和排放特性.研究表明,在正庚烷中加入2000/~3000/的甲醇后,低温反应时刻推迟,低温放热率降低,导致整个着火时刻推迟到上止点附近,燃烧持续时间适当延长,发动机当量比范围拓宽,但是过高比例的甲醇会引起低负荷范围的显著缩小.在排放特性方面,甲醇比例低于2000/时,CO和HC排放与正庚烷相当,但是3000/~4000/甲醇正庚烷燃料的HC就有明显升高.  相似文献   

11.
吕兴才  陈伟  黄震 《内燃机学报》2005,23(2):137-146
考察了废气再循环(EGR)、进气温度、冷却水出水温度和转速等发动机运转参数对HCCI发动机燃烧特征和排放特性的影响。实验结果表明:随EGR率提高,各种燃料的两阶段着火时刻推迟,燃烧持续期延长;高十六烷值燃料可以容许较高的EGR率,RON75最高仅可以采用45%的EGR;EGR对高十六烷值燃料的CO和UHC影响不大,对高辛烷值燃料的CO影响明显,并随EGR率增加CO排放升高。在其它运转参数中,进气温度对HCCI燃烧影响最为显著,随进气温度提高、冷却水温度升高,HCCI燃烧的着火时刻提前、燃烧持续期缩短,高辛烷值燃料的UHC和CO显著降低。转速升高,着火延迟,燃烧持续期延长。此外,研究发现,高辛烷值燃料对HCCI发动机的运转参数更为敏感。  相似文献   

12.
总结了均匀混合压缩燃烧 (HCCI)发动机化学动力学燃烧机理在理论上所取得的进展和应用情况 ,重点介绍了现有的化学动力学模型中反应物种类和化学反应式个数的选取方式及依据。讨论了将流体力学、热力学、化学动力学等结合起来的单区模型和几种多区模型的基本建模原理、优势及存在的问题 ,并对比分析了单区模型和多区模型的计算结果及各自的应用范围  相似文献   

13.
HCCI (Homogeneous Charge Compression Ignition) has been touted for many years as the alternate technology of choice for future engines, preserving the inherent efficiency of CIDI (Compression Ignition Direct Injection) engines while significantly reducing emissions. The current direction for all published diesel HCCI research is mixture preparation using the direct injection – system, referred to as internal mixture formation. The benefit of internal mixture formation is that it utilizes an already available direct injection system. Direct injected diesel HCCI can be divided into two areas, early injection (early in the compression stroke) and late injection (usually after Top Dead Center (aTDC)). Early direct injection HCCI requires carefully designed fuel injector to minimize the fuel wall-wetting that can cause combustion inefficiency and oil dilution. Late direct injection HCCI requires a long ignition delay and rapid mixing rate to achieve the homogeneous mixture. The ignition delay is extended by retarding the injection timing and rapid mixing rate was achieved by combining high swirl with toroidal combustion-bowl geometry. There is a compromise between Direct Injection (DI) and HCCI combustion regimes. Even under ideal conditions, it can prove difficult to form a truly homogeneous charge, which leads to elevated emissions when compared to true homogenous charge combustion and also strongly contribute to the high sensitivity of the combustion phasing to external parameters. The alternative to the internal mixture formation is, predictably, external mixture formation. By introducing the fuel external to the combustion chamber one can use the turbulence intake process to create a homogeneous charge regardless of engine conditions. This eliminates the need for combustion system changes which were necessary for the internal mixture formation method. With this method, the combustion system remains fully optimized for direct injection and also capable of running in HCCI combustion mode with nearly ideal mixture preparation. The key to the external mixture formation with diesel fuel is proper mixture preparation.  相似文献   

14.
The mechanisms of the influence of hydrogen enrichment on the combustion and emission characteristics of an n-heptane fuelled homogeneous charge compression ignition (HCCI) engine was numerically investigated using a multi-zone model. The model calculation successfully captured the most available experimental data. The results show that hydrogen addition retards combustion phasing of an n-heptane fuelled HCCI engine due to the dilution and chemical effects, with the dilution effect being more significant. It is because of the chemical effect that combustion duration is reduced at a constant compression ratio if an appropriate amount of hydrogen is added. As a result of retarded combustion phasing and reduced combustion duration, hydrogen addition increases indicated thermal efficiency at a constant combustion phasing. Hydrogen addition reduces indicated specific unburned hydrocarbon emissions, but slightly increases normalized unburned hydrocarbon emissions that are defined as the emissions per unit burned n-heptane mass. The increase in normalized unburned hydrocarbon emissions is caused by the presence of more remaining hydrocarbons that compete with hydrogen for some key radicals during high temperature combustion stage. At a given hydrogen addition level, N2O emissions increases with overly retarding combustion phasing, but hydrogen addition moderates this increase in N2O emissions.  相似文献   

15.
Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production and is used on most modern high-speed direct injection (HSDI) diesel engines. However EGR has different effects on combustion and emissions production that are difficult to distinguish (increase of intake temperature, delay of rate of heat release (ROHR), decrease of peak heat release, decrease in O2 concentration (and thus of global air/fuel ratio (AFR)) and flame temperature, increase of lift-off length, etc.), and thus the influence of EGR on NOx and particulate matter (PM) emissions is not perfectly understood, especially under high EGR rates. An experimental study has been conducted on a 2.0 l HSDI automotive diesel engine under low-load and part load conditions in order to distinguish and quantify some effects of EGR on combustion and NOx/PM emissions. The increase of inlet temperature with EGR has contrary effects on combustion and emissions, thus sometimes giving opposite tendencies as traditionally observed, as, for example, the reduction of NOx emissions with increased inlet temperature. For a purely diffusion combustion the ROHR is unchanged when the AFR is maintained when changing in-cylinder ambient gas properties (temperature or EGR rate). At low-load conditions, use of high EGR rates at constant boost pressure is a way to drastically reduce NOx and PM emissions but with an increase of brake-specific fuel consumption (BSFC) and other emissions (CO and hydrocarbon), whereas EGR at constant AFR may drastically reduce NOx emissions without important penalty on BSFC and soot emissions but is limited by the turbocharging system.  相似文献   

16.
Through experiments conducted on a single cylinder direct injection (DI) diesel engine, effects of exhaust gas recirculatoin (EGR) on combustion and emission during cold start were investigated. Combustion of first firing cycle can be promoted significantly by introducing EGR. In experiments, when partially closed choking valve and partially or fully opened EGR valve, peak cylinder pressure of first firing cycle was about 45% higher than that under normal condition without EGR, and the start of combustion (SOC) was also much earlier. EGR also had effects on combustion stability. In the case, which kept 50% or 100% opening of EGR valve (OEV) and kept 100% opening of choking valve (OCV), more stable combustion process was achieved when common rail pressure decreased during cold start. However, excessive amount of EGR led to extreme unstable combustion and even misfiring. Opacity and NO emissions were also analyzed in detail. In the case with maximum EGR, the lowest average opacity, which was less than 4%, was achieved during initial several firing cycles of cold start. But in the later phase, excessive amount of EGR led to a great deal of white smoke emission. NO emission during initial phase of cold start is mainly affected by increase in fuel amount of injection. When combustion became stable gradually, EGR showed significant effect on NO reduction.  相似文献   

17.
18.
The effects of reformed exhaust gas recirculation (REGR) on combustion and emissions of dimethyl ether (DME) homogeneous charge compression ignition (HCCI) engines are studied by multi-dimensional CFD coupled with chemical kinetic model. The results show that REGR combing EGR and DME reformed gases (DRG) improves combustion and emissions. REGR can delay ignition time by both EGR and DRG, and makes main combustion closer to top dead center (TDC), which is beneficial to reducing compression negative work and broadening load range of HCCI engines. The interaction of DRG and EGR helps avoid too high pressure rise rate or low power performance when being applied independent of each other. HC, CO and NOx emissions can be controlled simultaneously by REGR. Both advantages of DRG and EGR are used to decrease the emissions of HCCI engines by REGR, while the disadvantages of high emissions are alleviated when one of them is applied.  相似文献   

19.
The paper presents results of experimental research on a dual-fuel engine powered by diesel fuel and natural gas enriched with hydrogen. The authors attempted to replace CNG with hydrogen fuel as much as possible with a constant dose of diesel fuel of 10% of energy fraction. The tests were carried out for constant engine load of IMEP = 0.7 MPa and a rotational speed of n = 1500 rpm. The effect of hydrogen on combustion, heat release, combustion stability and exhaust emissions was analyzed. In the test engine, the limit of hydrogen energy fraction was 19%. The increase in the fraction caused an increase in the cycle-by-cycle variation and the occurrence of engine knocking. It was shown that the enrichment of CNG with hydrogen allows for the improvement in the combustion process compared to the co-combustion of diesel fuel with non-enriched CNG, where the reduction in the duration of combustion by 30% and shortening the time of achieving 50% of MFB by 50% were obtained. The evaluation of the spread of the end of combustion is also presented. For H2 energetic share over 20%, the spread of end of combustion was 48° of crank angle. Measurement of exhaust emissions during the tests revealed an increase in THC and NOx emissions.  相似文献   

20.
DI diesel engines are well established today as the main powertrain solution for trucks and other relevant heavy duty vehicles. At the same time emission legislation (mainly for NOx and particulate matter) becomes stricter, reducing their limit to extremely low values. One efficient method to control NOx in order to achieve future emissions limits is the use of rather high exhaust gas recirculation (EGR) rates accompanied by increased boost pressure to avoid the negative impact on soot emissions. The method is based on the reduction of gas temperature level and O2 availability inside the combustion chamber, but unfortunately it has usually an adverse effect on soot emissions and brake specific fuel consumption (bsfc). The use of high EGR rates creates the need for EGR gas cooling in order to minimize its negative impact on soot emissions especially at high engine load were the EGR flow rate and exhaust temperature are high. For this reason in the present paper it is examined, using a multi-zone combustion model, the effect of cooled EGR gas temperature level for various EGR percentages on performance and emissions of a turbocharged DI heavy duty diesel engine operating at full load. Results reveal that the decrease of EGR gas temperature has a positive effect on bsfc, soot (lower values) while it has only a small positive effect on NO. As revealed, the effect of low EGR temperature is stronger at high EGR rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号