首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A considerable speed-up in continuous-energy Monte Carlo neutron transport calculation can be achieved by using the same unionized energy grid for all point-wise reaction cross sections. This speed-up results from the fact that time-consuming grid iteration is reduced to minimum, and if the unionized grid is constructed by combining the grids of all nuclides, there is no loss of data or accuracy in the calculation. The drawback of this approach is that computer memory is wasted for storing a large number of redundant data points. Memory usage may become a problem, especially in burnup calculation, in which the irradiated materials consist of several hundred actinide and fission product nuclides. The grid size easily increases to over 1 million points, requiring tens of gigabytes of memory for storing the cross section data. This paper presents two practical methods for reducing the memory demand, while trying preserve the accuracy of the original data. The calculation routines are included in the PSG2/Serpent Monte Carlo reactor physics burnup calculation code and the methods are tested in a BWR assembly burnup calculation.  相似文献   

2.
PARCS code is a three-dimensional (3D) reactor core simulator which solves the steady-state and time-dependent multi-group neutron diffusion equations if the multi-group diffusion constants (MGDCs) are provided. The MGDCs are mostly prepared for reactor physics problems using deterministic lattice codes. Beside approximation in the geometry, a lattice code inherently applies estimates to the neutron transport model. On the other hand, the geometric flexibility and use of continuous energy cross sections data library associated with the Monte Carlo (MC) method makes it a good candidate for the generation of highly accurate multi-group cross sections. In this study, a new MC based methodology is applied to generate the MGDCs which can be utilized in the PARCS code input file directly or as PMAXS files for a reactor core simulation. To achieve this, a new tool in MATLAB software is developed to compute the MGDCs from the MCNPX 2.7 MC code outputs. Verification of the proposed method for two-group constants generation is carried out using Tehran research reactor (TRR) core simulation in different steady state conditions. The calculated values of axial and radial power distributions and multiplication factor using the PARCS code are verified against the MCNPX 2.7 code results. The results illustrate that the proposed method has high accuracy in MGDCs generation.  相似文献   

3.
蒙特卡罗模拟方法在反应堆物理分析中的发展和应用受到计算机内存不足的限制,区域分解是一种解决方法。本文将区域分解方法应用于中子输运蒙特卡罗模拟过程,基于反应堆蒙特卡罗程序RMC,实现区域分解基本功能,并测试、分析了其并行性能。结果表明,负载均衡与通信性能是影响区域分解方法的关键因素。对区域分解方法的结果可重复性问题进行了研究,提出对源中子进行排序的实现方法。  相似文献   

4.
This paper presents a comprehensive analysis performed by a new cluster analysis code ‘MESSIAH’ on reactor physics constants measured in the critical facility for a pressure-tube-type, heavy-water-moderated reactor. The MESSIAH code system utilizes the method of the collision probability to solve the neutron transport equation. The effective space dependent cross sections are calculated in the thermal and resonance energy range before the eigenvalue calculation for the whole energy range. With use of these cross sections, the multi-group, space dependent transport equation is solved, and the flux distribution, spectrum and k eff are obtained to the input bucking. In the above three steps the method of the collision probability is used consistently and extensively. The treatment of leakage neutrons from lattices in MESSIAH is also confirmed by an independent method using a Monte Carlo calculation. The calculated reactor physics constants, especially the micro-parameters and the activation traverse of Dy, agreed fairly well with the experiment. The diffusion calculation with use of the group constants calculated by MESSIAH predicts the reactivity of 0% void core excellently (<0.12%). However, for a 100% void core, the calculated reactivity was slightly lower than the experiment (~0.74%), which was attributed to over prediction of the diffusion constants.  相似文献   

5.
反应堆临界-燃耗耦合蒙特卡罗计算   总被引:1,自引:1,他引:0  
基于连续点截面MCNP程序 ,研制了三维多群P3 中子输运蒙特卡罗程序MCMG ,并与栅元均匀化程序WIMS耦合 ,实现了临界 燃耗耦合计算。采用WIMS产生的 69群共振、自屏宏观中子截面和BUGLE 80u47群微观中子截面 ,分别计算了简单反应堆和临界实验堆问题 ,计算结果与其它输运方法的计算结果和试验结果一致。在相同计算精度下 ,MCMG的计算时间较MCNP的计算时间少  相似文献   

6.
OpenMC是麻省理工大学计算反应堆物理组开发的开源蒙特卡罗程序,能够方便地制作适用于特定堆芯中子能谱分布的多群反应截面及高阶勒让德散射截面以用于离散坐标输运程序ANISN的计算。本文基于ENDF/B-Ⅶ.1和CENDL-3.1评价数据库,利用OpenMC计算制作了ANSIN格式的多群截面并通过基准题的计算验证计算结果的准确性。通过截面转换程序的编写,将OpenMC给出的堆芯各阶勒让德散射分量,堆芯中子能谱分布,散射、吸收反应率以及裂变中子产生速率等信息转换为ANISN程序可读取的截面库格式。采用制作的截面库利用ANINS计算有效中子增殖因子及堆芯中子通量分布。结果表明,ANISN确定论的计算结果与OpenMC给出的蒙特卡罗计算结果相吻合,验证了这种方法可有效地为ANISN提供截面数据,将来可推广应用于二维、三维确定论中子输运计算。  相似文献   

7.
In the nuclear reactor design, a code for automatically generated multi-temperature continuous-energy neu- tron cross section data library, which is called AMTND for short, was designed and developed to meet the need of the reactor core design coupled with thermal-hydraulic design. The code can provide a point-wise cross- section at any temperature for a Monte Carlo neutron transport program, such as MCNE In ensuring that the nuclear data produced by AMTND meets the testing of critical benchmark experiments, the time-consumed by the nuclear data generating of AMTND compared with NJOY's was carried out and the result shows the code's excellence. In order to test the accuracy of the code, out and the results verified the code preliminarily. the Doppler coefficient test benchmark was also carried  相似文献   

8.
Neutron displacement cross sections for SiC are re-evaluated by a Monte Carlo approach, with damage energies of primary recoils calculated by the stopping and range of ions in matter (SRIM) code. The validity of the Monte Carlo model is examined by the case of iron, and the results show good agreement with the reference values. Neutron displacement cross sections for SiC at energies up to 100 MeV are calculated, and averaged over the neutron spectra of a fusion DEMO reactor, the high flux test module of the International Fusion Materials Irradiation Facility, and typical fission test reactors. Gas production is also calculated for those neutron irradiation facilities. Finally, the suitability of the displacement cross sections is discussed. The results on comparison among neutron irradiation of different facilities by the current displacement cross sections are similar to those by results of the previous work. Moreover, since neutron displacement cross sections in this study are calculated with damage energies of primary recoils calculated by SRIM, neutron damage evaluated by our displacement cross sections is suitable for correlation with damage by heavy ions calculated by SRIM.  相似文献   

9.
The fusion–fission hybrid reactor is considered as a potential path to the early application of fusion energy. A new concept with pressure tube type blanket has recently been proposed for a feasible hybrid reactor. In this paper, a code system for the neutronics analysis of the pressure tube type hybrid reactor is developed based on the two-step calculation scheme: the few-group homogeneous constant calculation and the full blanket calculation. The few-group homogeneous constants are calculated using the lattice code DRAGON4. The blanket transport calculation is performed by the multigroup Monte Carlo code. A link procedure for fitting the cross sections is developed between these two steps. An additional procedure is developed to calculate the burnup, power distribution, energy multiplication factor, tritium breeding ratio and neutron multiplication factor. From some numerical results, it is found that the code system NAPTH is reliable and exhibits good calculation efficiency. It can be used for the conceptual design of the pressure tube type hybrid reactor with precise geometry.  相似文献   

10.
A fast and thermal neutron coupled core adopts blanket fuel assemblies with zirconium hydrides in the core for negative coolant void reactivity. Conventional neutronics calculation methods have been developed for analysis of a fast core or thermal core, in which the coarse-group macroscopic cross sections of fuel assemblies are prepared without including the effect of the surrounding fuel assemblies. However, such methods are not adequate for analyzing fast and thermal neutron coupled cores where the intra-assembly and inter-assembly heterogeneity effects must be precisely taken into account. Recently, a concept of reconstruction of cell homogenized macroscopic cross sections has been proposed to take into account effects of inter-assembly heterogeneities on macroscopic cross sections used in the reactor core analysis and successfully applied based on a Monte Carlo method. In the present study, a reconstruction method of cell homogenized coarse-group macroscopic cross section for analyzing fast and thermal coupled cores is developed based on a deterministic neutronics calculation code system, SRAC. Three types of fixed source calculations for unit assembly cell geometry are performed independently of the specific core layouts and their results are combined with the results of core analysis to produce cell homogenized coarse-group macroscopic cross sections. Numerical results show that the heterogeneity effects can be adequately reflected in the reconstructed macroscopic cross sections with the proposed method. When the number of energy groups is small, the proposed method gives poor results in the transitional energy groups from resonance to thermal energy. Therefore, it is necessary to increase the number of energy groups in this energy range.  相似文献   

11.
The conventional resonance treatment in the transport lattice codes requires resonance integral tables in which resonance integrals are tabulated as a function of the background cross sections to be a measure of dilution. Typically self-shielded resonance cross sections in the resonance integral table are generated by performing slowing down calculations with point-wise cross sections defined on an ultra fine energy grid for one-dimensional cylindrical pin cells. Collision probability, interface current method and discrete ordinate method have been used for the one-dimensional cylindrical slowing down calculations. These resonance integral tables are to be used in estimating the self-shielded resonance cross sections for the rectangular or hexagonal pin cells, which results in a reactivity difference due to the geometrical effect on the effective resonance cross sections. In order to improve this problem, the method of characteristics has been applied to the slowing down calculations for two-dimensional square pin cells. The geometrical effect on the reactivity has been quantitatively analyzed by using the Monte Carlo code MCNP and the transport lattice code KARMA. The method of characteristics has been implemented into the MERIT code developed at KAERI for slowing down calculations. The computation results show that the reactivity differences and the discrepancies of the effective resonance cross sections due to the geometrical inconsistency could be significantly improved by using the method of characteristics.  相似文献   

12.
燃耗计算在反应堆设计、分析研究中起着重要作用.一维、二维耦合燃耗程序因其几何限制难以满足先进反应堆精细设计分析的要求.本文研发了基于蒙特卡罗方法与指数欧拉法耦合的三维燃耗程序.程序采用编写耦合MCNP与FISPACT的接口程序的方法,结合了MCNP处理复杂几何能力强,FISPACT计算核素全面、能谱多样的特点,实现了考...  相似文献   

13.
We have determined the absolute differential neutron-energy spectrum for the low-temperature fast-neutron irradiation facility in the CP-5 reactor by means of a 20-foil activation technique. This technique employs the most recent version of the SAND-II computer code, which iteratively unfolds the neutron spectrum by fitting the foil activities. A Monte Carlo routine was also employed to calculate standard-deviation errors in each neutron-energy group. Using this differential neutron spectrum we have calculated, for numerous elements, total recoil cross sections, detailed primary-recoil group distributions, total damage-energy cross sections, damage-energy distributions, and an error analysis based on the uncertainties in the neutron spectrum. The significance of this information with respect to the interpretation of various neutron radiation-damage experiments, including sputtering, disordering of ordered alloys, and changes in critical current of A-15 compound superconductors is discussed. A detailed comparison is made among initial resistivity-damage rates for five widely different (well characterized) neutron sources, fission fragments, and heavy ions.  相似文献   

14.
A Monte Carlo code called CARLO DTS, developed for the efficiency and proton recoil spectra calculation of the Dual Thin Scintillator (DTS) neutron detector is described. The code CARLO DTS covers the neutron energy range between 1 and 20 MeV. The cross sections and angular distributions were taken from the ENDF/B-V data file for the nuclear reactions involved: H(n.n)H, C(n,n)C and inelastic scattering, (n,), (n,n′)3 reactions on carbon-12. The theoretical calculations are compared to experimental results at two neutron energies, namely:2.446 and 14.04 MeV, obtained by means of the Time Correlated Associated Particle Technique.  相似文献   

15.
The reconstruction method of homogenized cross sections in the direct response matrix method has been developed. In this reconstruction method, homogenized cross sections, which take into consideration the influences of neighboring fuel assemblies, can be reconstructed with the response relationship of incoming neutron partial currents and neutron production rates. Calculations for heterogeneous multi fuel assembly systems were done to verify the developed method. The thermal energy group fuel assembly cell-averaged homogenized cross sections reconstructed by this method agreed with those evaluated by the direct calculation of the whole system using the Monte Carlo method within 0.2%. The effect using the reconstructed fuel assembly cell-averaged homogenized cross sections in a conventional core analysis code using cross sections homogenized in a fuel assembly cell was also investigated. The results obtained showed that the analysis accuracy of k-infinity can be improved by using the cross sections reconstructed by the method. Because almost no influences on the analysis accuracy could be found related to the divided numbers of the surfaces and the angles, and the response relationship with neutron production rates of fuel rods or a fuel assembly cell-averaged neutron production rate, this reconstruction method is applicable to a conventional core analysis code using homogenized cross sections in a fuel assembly cell.  相似文献   

16.
A new physics analysis procedure has been developed for a prismatic very high temperature gas-cooled reactor based on a conventional two-step procedure for the PWR physics analysis. The HELIOS and MASTER codes were employed to generate the coarse group cross sections through a transport lattice calculation, and to perform the 3-dimensional core physics analysis by a nodal diffusion calculation, respectively. Physics analysis of the prismatic VHTRs involves particular modeling issues such as a double heterogeneity of the coated fuel particles, a neutron streaming in the coolant channels, a strong core-reflector interaction, and large spectrum shifts due to changes of the surrounding environment and state parameters. Double heterogeneity effect was considered by using a recently developed reactivity-equivalent physical transformation method. Neutron streaming effect was quantified through 3-dimensional Monte Carlo transport calculations by using the MCNP code. Strong core-reflector interaction could be handled by applying an equivalence theory to the generation of the reflector cross sections. The effects of a spectrum shift could be covered by optimizing the coarse energy group structure. A two-step analysis procedure was established for the prismatic VHTR physics analysis by combining all the methodologies described above. The applicability of our code system was tested against core benchmark problems. The results of these benchmark tests show that our code system is very accurate and practical for a prismatic VHTR physics analysis.  相似文献   

17.
Integral experiments that measure the transport of 14 MeV neutrons through a 0.30-m-diameter duct having a length-to-diameter ratio of 2.83 that is partially plugged with a 0.15 m diameter, 0.51 m long shield comprised of alternating layers of stainless steel type 304 and borated polyethylene have been carried out at the Oak Ridge National Laboratory. Measured and calculated neutron and gamma ray energy spectra are compared at several locations relative to the mouth of the duct. The measured spectra were obtained using an NE-213 liquid scintillator detector with pulse shape discrimination methods used to simultaneously resolve neutron and gamma ray events. The calculated spectra were obtained using a computer code network that incorporates two radiation transport methods: discrete ordinates (with P3 multigroup cross sections) and Monte Carlo (with continuous point cross sections). The two radiation transport methods are required to account for neutrons that singly scatter from the duct to the detectors. The calculated and measured neutron energy spectra above 850 keV agree within 5–50% depending on detector location and neutron energy. The calculated and measured gamma ray energy spectra above 750 keV are also in favorable agreement, 5–50%, depending on detector location and gamma ray energy.  相似文献   

18.
Supercritical-pressure light water cooled fast reactor adopts the blanket fuel assemblies with depleted uranium fuel and zirconium hydride layer in the core for negative coolant void reactivity. Thermal neutrons are generated in the core of fast reactor. It is called “fast and thermal neutron coupled core”. The purpose of the present study is to examine the accuracy of assembly and core calculations including preparation of the macroscopic cross sections with the SRAC code system for “fast and thermal neutron coupled core” in comparison with the Monte Carlo codes, MVP and MVP-BURN. Accuracy of the neutron multiplication factor and coolant void reactivity calculation has been evaluated in four types of cores of different fractions of the blanket fuel assembly with zirconium hydride rods. The conventional analysis is based on the macroscopic cross sections which are prepared with infinite lattice. The conventional SRAC calculation underestimates the neuron multiplication factor for all types of cores. Other findings are that the conventional SRAC calculation overestimates coolant void reactivity for the cores without zirconium hydride rods, and underestimates coolant void reactivity for the core of all blanket fuel assemblies having zirconium hydride rods. To overcome these problems, it has been proposed that the macroscopic cross sections of seed fuel assembly are prepared with the model that a seed fuel assembly is surrounded by blanket fuel assemblies in order to take into account the effects of the surrounding fuel assemblies. Evaluations show that accuracy of the neutron multiplication factor by the SRAC calculation can be improved by the proposed method.  相似文献   

19.
DRAGON&DONJON程序在MSR中堆芯燃耗计算的适用性   总被引:2,自引:0,他引:2  
DRAGONDONJON组件-堆芯"两步法"程序通过合理简化,理论可适用于任何堆芯与工况。使用蒙特卡罗方法 RMC(Reactor Monte Carlo code)、MCNP(Monte Carlo Neutron Particle transport code)程序验证DRADON程序是否能够承担快/热谱型熔盐堆(Molten Salt Reactor,MSR)焚烧TRU、Th U燃料燃耗计算。选出熔盐增殖堆(Molten Salt Breeder Reactor,MSBR)与熔盐锕系元素再循环和嬗变堆(Molten Salt Advanced Reactor Transmuter,MOSART)堆型进行比较,同时分别利用RMC程序验证DRAGON程序组件燃耗计算的准确性,利用MCNP程序验证DRAGON程序组件均匀化方法以及DONJON程序截面调用和程序全堆扩散的准确性。结果表明,组件燃耗计算中,TRU和Th U燃料满足燃耗计算要求;堆芯临界计算中,快/热谱堆芯计算误差均小于0.001。证明DRADON程序可以胜任快、热谱型MSR焚烧TRU、Th U燃料的物理计算任务。  相似文献   

20.
A pebble bed reactor generally has double heterogeneity consisting of two kinds of spherical fuel element. In the core, there exist many fuel balls piled up randomly in a high packing fraction. And each fuel ball contains a lot of small fuel particles which are also distributed randomly. In this study, to realize precise neutron transport calculation of such reactors with the continuous energy Monte Carlo method, a new sampling method has been developed. The new method has been implemented in the general purpose Monte Carlo code MCNP to develop a modified version MCNP-BALL. This method was validated by calculating inventory of spherical fuel elements arranged successively by sampling during transport calculation and also by performing criticality calculations in ordered packing models. From the results, it was confirmed that the inventory of spherical fuel elements could be reproduced using MCNP-BALL within a sufficient accuracy of 0.2%. And the comparison of criticality calculations in ordered packing models between MCNP-BALL and the reference method shows excellent agreement in neutron spectrum as well as multiplication factor.

MCNP-BALL enables us to analyze pebble bed type cores such as PROTEUS precisely with the continuous energy Monte Carlo method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号