共查询到20条相似文献,搜索用时 0 毫秒
1.
Xiaoyun Yue Guoyang Chang 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2018,40(4):432-438
Research for finding alternative fuel sources has been concluded that the renewable fuels such as biodiesel can be used as an alternative to fossil fuels because of the energy security reasons and environmental benefits. In this contribution, transesterification of castor oil with methanol to form biodiesel has been modeled by using artificial neural network fuzzy interference system (ANFIS) approach. Methanol to oil molar ratio, catalyst amount (C), temperature (T), and time (S) were used as input parameters and fatty acid methyl ester yield was used as output parameter for modeling the efficiency of biodiesel production from castor oil. Obtaining low value of absolute deviation (2.2391), high value of R-squared (0.98704), and other modeling results proves that ANFIS modeling is an effective approach for biodiesel production from castor oil. In conclusion, comparison between our model and other previous predictive models reported in open literature indicates the priority of our model. 相似文献
2.
The utilization of non-edible feedstock such as moringa oleifera for biodiesel production attracts much attention owing to the issue with regards to avoiding a threat to food supplies. In this study, the optimization of biodiesel production parameters for moringa oleifera oil was carried out. The free fatty acid value of moringa oil was found to be 0.6%, rendering the one step alkaline transesterification method for converting moringa fatty acids to their methyl esters possible. The optimum production parameters: catalyst amount, alcohol amount, temperature, agitation speed and reaction time were determined experimentally and found to be: 1.0 wt% catalyst amount, 30 wt% methanol amount, 60 °C reaction temperature, 400 rpm agitation rate and 60 min reaction time. With these optimal conditions the conversion efficiency was 82%. The properties of the moringa biodiesel that was produced were observed to fall within the recommended international biodiesel standards. However, moringa biodiesel showed high values of cloud and pour points of 10 °C and 3 °C respectively, which present a problem as regards use in cold temperatures. 相似文献
3.
In this study, a simple and solvent-free method was used to prepare sulfated zirconia-alumina (SZA) catalyst. Its catalytic activity was subsequently investigated for the transesterification of Jatropha curcas L. oil to fatty acid methyl ester (FAME). The effects of catalyst preparation parameters on the yield of FAME were investigated using Design of Experiment (DOE). Results revealed that calcination temperature has a quadratic effect while calcination duration has a linear effect on the yield of FAME. Apart from that, interaction between both variables was also found to significantly affect the yield of FAME. At optimum condition; calcination temperature and calcination duration at 490 °C and 4 h, respectively, an optimum FAME yield of 78.2 wt% was obtained. Characterization with XRD, IR and BET were then used to verify the characteristic of SZA catalyst with those prepared using well established method and also to describe the catalyst characteristic with its activity. 相似文献
4.
Camelina oil is a low-cost feedstock for biodiesel production that has received a great deal of attention in recent years. This paper describes an optimization study on the production of biodiesel from camelina seed oil using alkaline transesterification. The optimization was based on sixteen well-planned orthogonal experiments (OA16 matrix). Four main process conditions in the transesterification reaction for obtaining the maximum biodiesel production yield (i.e. methanol quantity, reaction time, reaction temperature and catalyst concentration) were investigated. It was found that the order of significant factors for biodiesel production is catalyst concentration > reaction time > reaction temperature > methanol to oil ratio. Based on the results of the range analysis and analysis of variance (ANOVA), the maximum biodiesel yield was found at a molar ratio of methanol to oil of 8:1, a reaction time of 70 min, a reaction temperature of 50 °C, and a catalyst concentration of 1 wt.%. The product and FAME yields of biodiesel under optimal conditions reached 95.8% and 98.4%, respectively. The properties of the optimized biodiesel, including density, kinematic viscosity, acid value, etc., were determined and compared with those produced from other oil feedstocks. The optimized biodiesel from camelina oil meets the relevant ASTM D6571 and EN 14214 biodiesel standards and can be used as a qualified fuel for diesel engines. 相似文献
5.
The aim of this study is to evaluate the potential use of biodiesel produced from waste cooking oil (WCO) in Mexico and its CO2 emission reduction potential for the Mexican transport sector and associated costs. The results show, based on 2010 data, that the potential of biodiesel from WCO is between 7.8 PJ and 17.7 PJ that represent between 1.5% and 3.3% of petro-diesel consumption for the road transport sector and can reduce between 0.51 and 1.02 Mt of CO2, (1.0%–2.7% of CO2-associated emissions), depending on the recovery ratio of WCO from vegetable oil consumption for cooking and considering CO2 emissions for biodiesel production and methanol emissions during production and combustion in the blend. Primary energy used to produce 1 MJ of WCO-biodiesel is 0.8727 MJ, while literature reports 1.2007 MJ to produce 1 MJ of petro-diesel. Biodiesel costs are similar to petro-diesel costs if WCO is free. The paper offers suggestions for policies that promote increased recollection of WCO for biodiesel production and reduced illegal marketing of WCO, which is the main barrier to increase biodiesel production from WCO. The data used for the analysis is based on a case study of a WCO biodiesel plant that operates in Mexico City. 相似文献
6.
The present study deals with the production of biodiesel using waste fish oil. The research assesses the effect of the transesterification parameters on the biodiesel yield and its properties, including temperature (40–60 °C), molar ratio methanol to oil (3:1–9:1) and reaction time (30–90 min). The experimental results were fitted to complete quadratic models and optimized by response surface methodology. All the biodiesel samples presented a FAME content higher than 93 wt.% with a maximum, 95.39 wt.%, at 60 °C, 9:1 of methanol to oil ratio and 90 min. On the other hand, a maximum biodiesel yield was found at the same methanol to oil ratio and reaction time conditions but at lower temperature, 40 °C, which reduced the saponification of triglycerides by the alkaline catalyst employed. Adequate values of kinematic viscosity (measured at 30 °C) were obtained, with a minimum of 6.30 mm2/s obtained at 60 °C, 5.15:1 of methanol to oil ratio and 55.52 min. However, the oxidative stability of the biodiesels produced must be further improved by adding antioxidants because low values of IP, below 2.22 h, were obtained. Finally, satisfactory values of completion of melt onset temperature, ranging from 3.31 °C to 3.83 °C, were measured. 相似文献
7.
R. Alcantara J. Amores L. Canoira E. Fidalgo M. J. Franco A. Navarro 《Biomass & bioenergy》2000,18(6):515-527
Three fatty materials, soy-bean oil, used frying oil and tallow, were transformed into two different types of biodiesel, by transesterification and amidation reactions with methanol and diethylamine respectively. The ignition properties of these types of biodiesel were evaluated calculating the cetane index of the transesterification products, and the blending cetane number of the amide biodiesel blended with conventional diesel. Amide biodiesel enhances the ignition properties of the petrochemical diesel fuel, and it could account for the 5% market share that should be secured to biofuels by 2005. 相似文献
8.
Disposal of waste palm cooking oil (WPCO) via an environmental-friendly route is of major importance in the quest for sustainable development. In this study, WPCO was utilized instead of refined vegetable oils as the source of triglycerides for biodiesel production. WPCO contains several impurities, such as water and free fatty acids, which limit its application in catalytic transesterification processes. Consequently, a catalyst-free process using supercritical methanol was employed to investigate the potential of WPCO as an economical feedstock for biodiesel production. The parameters that influence the reaction, including reaction time, temperature and the molar ratio of alcohol to oil, were investigated. For comparison purposes, refined palm oil (RPO) was also subjected to supercritical methanol reaction and it was found that both processes produced comparable optimum yields of 80% at their respective optimum conditions. Hence, it can be concluded that WPCO has high potential as an economical and practical future source of biodiesel. 相似文献
9.
In the present work the production of biodiesel using bitter almond oil (BAO) in a potassium hydroxide catalyzed transesterification reaction was investigated. The BAO was obtained from resources available in Iran and its physical and chemical properties including iodine value, acid value, density, kinematic viscosity, fatty acid composition and mean molecular weight were specified. The low acid value of BAO (0.24 mg KOH/g) indicated that the pretreatment of raw oil with acid was not required. The fatty acid content analysis confirmed that the contribution of unsaturated fatty acids in the BAO is high (84.7 wt.%). Effect of different parameters including methanol to oil molar ratio (3–11 mol/mol), potassium hydroxide concentration (0.1–1.7% w/w) and reaction temperature (30–70 °C) on the production of biodiesel were investigated. The results indicated that these parameters were important factors affecting the tranesterification reaction. The fuel properties of biodiesel including iodine value, acid value, density, kinematic viscosity, saponification value, cetane number, flash point, cloud point, pour point and distillation characteristics were measured. The properties were compared with those of petroleum diesel, EN 14214 and ASTM 6751 biodiesel standards and an acceptable agreement was observed. 相似文献
10.
Shashank Mohan Amit Pal Raj Kumar Singh R. S. Mishra 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2019,41(3):261-268
The present study deals with the development of a biodiesel production reactor based on pressurized ultrasonic cavitation technique. Transesterification of Jatropha oil takes place by passing low-frequency ultrasonic irradiation in the reaction mixture flowing at pressurized conditions in the sonochemical reactor. Reaction variables such as reaction time, molar ratio, catalyst concentration, and pressure of the reaction mixture were investigated to find the optimal parameters for biodiesel production. The energy requirement decreases with increase in pressure. Very low value of Specific Energy Consumption (0.018 kWh/kg) and significantly high value of Energy Use Index (598.83) are obtained when the pressure of reaction mixture is 15 bar. Increasing the pressure thereafter, leads to nominal gains. Ultrasonic irradiation at high-pressure condition has an additional advantage of rapid reaction and lower requirement of alcohol to oil molar ratio and catalyst concentration. Fifteen bar pressure is optimal for biodiesel production. 相似文献
11.
Review of biodiesel composition, properties, and specifications 总被引:4,自引:0,他引:4
S. Kent Hoekman Amber BrochCurtis Robbins Eric CenicerosMani Natarajan 《Renewable & Sustainable Energy Reviews》2012,16(1):143-169
Biodiesel is a renewable transportation fuel consisting of fatty acid methyl esters (FAME), generally produced by transesterification of vegetable oils and animal fats. In this review, the fatty acid (FA) profiles of 12 common biodiesel feedstocks were summarized. Considerable compositional variability exists across the range of feedstocks. For example, coconut, palm and tallow contain high amounts of saturated FA; while corn, rapeseed, safflower, soy, and sunflower are dominated by unsaturated FA. Much less information is available regarding the FA profiles of algal lipids that could serve as biodiesel feedstocks. However, some algal species contain considerably higher levels of poly-unsaturated FA than is typically found in vegetable oils.Differences in chemical and physical properties among biodiesel fuels can be explained largely by the fuels’ FA profiles. Two features that are especially influential are the size distribution and the degree of unsaturation within the FA structures. For the 12 biodiesel types reviewed here, it was shown that several fuel properties - including viscosity, specific gravity, cetane number, iodine value, and low temperature performance metrics - are highly correlated with the average unsaturation of the FAME profiles. Due to opposing effects of certain FAME structural features, it is not possible to define a single composition that is optimum with respect to all important fuel properties. However, to ensure satisfactory in-use performance with respect to low temperature operability and oxidative stability, biodiesel should contain relatively low concentrations of both long-chain saturated FAME and poly-unsaturated FAME. 相似文献
12.
The biodiesel (fatty acid methyl esters, FAME) was prepared by transesterification of the mixed oil (soybean oil and rapeseed oil) with sodium hydroxide (NaOH) as catalyst. The effects of mole ratio of methanol to oil, reaction temperature, catalyst amount and reaction time on the yield were studied. In order to decrease the operational temperature, a co-solvent (hexane) was added into the reactants and the conversion efficiency of the reaction was improved. The optimal reaction conditions were obtained by this experiment: methanol/oil mole ratio 5.0:1, reaction temperature 55 °C, catalyst amount 0.8 wt.% and reaction time 2.0 h. Under the optimum conditions, a 94% yield of methyl esters was reached ∼94%. The structure of the biodiesel was characterized by FT-IR spectroscopy. The sulfur content of biodiesel was determined by Inductively Coupled Plasma emission spectrometer (ICP), and the satisfied result was obtained. The properties of obtained biodiesel from mixed oil are close to commercial diesel fuel and is rated as a realistic fuel as an alternative to diesel. Production of biodiesel has positive impact on the utilization of agricultural and forestry products. 相似文献
13.
In the present work, zeolite based catalyst was prepared from zeolite tuft by impregnation methods. The zeolite tuft was initially treated with hydrochloric acid (16%) and then several KOH/zeolite catalysts were prepared by impregnation in KOH solutions. Various solutions of KOH with different molarities (1–6 M) were used. Further modification for the catalyst was performed by a 2nd step impregnation treatment by heating and stirring the KOH/zeolite to 80 °C for 4 h. The zeolite tuft and the prepared catalysts were characterized by several analytical techniques in order to explore their physicochemical properties. These tests include: X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM), Zero point of Charge (PHzpc), Fourier Transform Infrared (FT-IR), Energy-dispersive X-Ray analysis (EDX) and X-Ray Diffraction (XRD). The catalysts were then used for transesterification of waste sunflower vegetable oil in order to produce biodiesel. Among the different catalysts prepared, the 1–4M KOH/TZT catalyst provided the maximum biodiesel yield of 96.7% at 50 °C reaction temperature, methanol to oil molar ratio of 11.5:1, agitation speed of 800 rpm, 335 μm catalyst particle size and 2 h reaction time. The physicochemical properties of the produced biodiesel comply with the EN and ASTM standard specifications. 相似文献
14.
This work compared the production of biodiesel from two different non-edible oils with relatively high acid values (Jatropha oil and Krating oil). Using non-catalytic supercritical methanol transesterification, high methyl ester yield (85–90%) can be obtained in a very short time (5–10 min). However, the dependence of fatty acid methyl ester yield on reaction conditions (i.e., temperature and pressure) and the optimum conditions were different by the source of oils and were correlated to the amount of free fatty acids (FFAs) and unsaturated fatty acid content in oils. Krating oil, which has higher FFAs and unsaturated fatty acid content, gave higher fatty acid methyl ester yield of 90.4% at 260 °C, 16 MPa, and 10 min whereas biodiesel from Jatropha oil gave fatty acid methyl ester yield of 84.6% at 320 °C, 15 MPa and 5 min using the same molar ratio of methanol to oil 40:1. The product quality from crude Krating oil met the biodiesel standard. Pre-processing steps such as degumming or oil purification are not necessary. 相似文献
15.
Sema Aslan Necdet Aka 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2019,41(3):290-297
NaOH/sepiolite nanocomposite heterogenous base catalyst (NaOH/sep.) was prepared via impregnation process and tested in a three-neck flask equipped with thermometer and reflux condenser for the production of biodiesel from transesterification of canola oil in an excess amount of methanol. The ratio of NaOH and sepiolite was selected as 1:4. The influence of various operational parameters was examined such as methanol to oil molar ratio, catalyst dosage, and reaction temperature. Untreated sepiolite and NaOH loaded sepiolite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy and Energy dispersive spectroscopy analysis. Overall NaOH/sep. based biodiesel production yield was examined by the help of Gas chromatography-mass spectrometry analysis. The yield was calculated from the peak areas as 80.93% which is better than that of expensive catalysis system using studies. 相似文献
16.
This work focuses on the development of heterogeneous catalysts for biodiesel production from high free fatty acid (FFA) containing Jatropha curcas oil (JCO). Solid base and acid catalysts were prepared and tested for transesterification in a batch reactor under mild reaction conditions. Mixtures of solid base and acid catalysts were also tested for single-step simultaneous esterification and transesterification. More soap formation was found to be the main problem for calcium oxide (CaO) and lithium doped calcium oxide (Li-CaO) catalysts during the reaction of jatropha oil and methanol than for the rapeseed oil (RSO). CaO with Li doping showed increased conversion to biodiesel than bare CaO as a catalyst. La2O3/ZnO, La2O3/Al2O3 and La0.1Ca0.9MnO3 catalysts were also tested and among them La2O3-ZnO showed higher activity. Mixture of solid base catalysts (CaO and Li-CaO) and solid acid catalyst (Fe2(SO4)3) were found to give complete conversion to biodiesel in a single-step simultaneous esterification and transesterification process. 相似文献
17.
Taraneh Mihankhah Nader Ghaffari Khaligh 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2016,38(24):3668-3672
This study was carried out to produce biodiesel from olive oil waste by transesterification reaction. Several important reaction variables (the weight ratio of oil to methanol, the temperature, and reaction time) were evaluated to obtain a high quality of biodiesel fuel that meets authentic standards. Solar energy was applied for the transesterification reaction and electricity generated by photovoltaic panels was used to power a motor for mixing the reaction solution. 相似文献
18.
Biodiesel has high potential as a new and renewable energy source in the future, as a substitution fuel for petroleum-derived diesel and can be used in existing diesel engine without modification. Currently, more than 95% of the world biodiesel is produced from edible oil which is easily available on large scale from the agricultural industry. However, continuous and large-scale production of biodiesel from edible oil without proper planning may cause negative impact to the world, such as depletion of food supply leading to economic imbalance. A possible solution to overcome this problem is to use non-edible oil or waste edible oil (WEO). In this context, the next question that comes in mind would be if the use of non-edible oil overcomes the short-comings of using edible oil. Apart from that, if WEO were to be used, is it sufficient to meet the demand of biodiesel. All these issues will be addressed in this paper by discussing the advantages and disadvantages of using edible oil vs. non-edible vs. WEO as feedstock for biodiesel production. The discussion will cover various aspects ranging from oil composition, oil yield, economics, cultivation requirements, land availability and also the resources availability. Finally, a proposed solution will be presented. 相似文献
19.
A sulfated zirconia catalyst has been prepared by a novel one-pot vapor-controlled synthesis route using ammonium persulphate as sulfate agent. A possible formation mechanism of the catalyst is proposed. The effect of calcination temperature and S/Zr molar ratio on the structural, textural and catalytic properties of the prepared catalyst were investigated in detail using X-ray diffraction (XRD), N2 adsorption–desorption, ammonia temperature programmed desorption (NH3-TPD), Fourier transform infrared spectroscopy (FTIR) and a scanning electron microscope (SEM) which was equipped with an energy dispersive spectroscope (EDS). The results indicated that the samples calcined at 500 °C possessed zirconia of pure tetragonal structure, more content of sulfur and better distribution of acid sites on the surface of zirconia compared with the samples calcined at 600 °C at fixed S/Zr molar ratio. Moreover, they showed excellent catalytic activity with 100% yields of biodiesel for the transesterification of soybean oil with methanol. 相似文献
20.
M. Mohamed Musthafa 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2016,38(20):2994-3000
The production of biodiesel from edible oils may cause negative impact to any country through food crisis which may lead to economic imbalance. Hence, this study focuses on viability of extracting the oil from the Citrus limetta seeds for biodiesel production for the first time. Composition of C. limetta oil was determined by gas chromatography. C. limetta biodiesel was produced by simple transesterification process, and further physiochemical properties were analyzed as per the standards. This study also describes the suitable characterization and optimization parameters used for conversion of C. limetta seed oil into biodiesel. 相似文献