首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative study of vegetable oil methyl esters (biodiesels)   总被引:1,自引:0,他引:1  
In the present study, rubber seed oil, coconut oil and palm kernel oil, which are locally available especially in Kerala (India), are chosen and their transesterification processes have been investigated. The various process variables like temperature, catalyst concentration, amount of methanol and reaction time were optimized. Biodiesel from rubber seed oil (with high free fatty acid) was produced by employing two-step pretreatment process (acid esterification) to reduce acid value from 48 to 1.72 mg KOH/g with 0.40 and 0.35 v/v methanol-oil ratio and 1.0% v/v H2SO4 as catalyst at a temperature of 63(±2) °C with 1 h reaction time followed by transesterification using methanol-oil ratio of 0.30 v/v, 0.5 w/v KOH as alkaline catalyst at 55(±2) °C with 40 min reaction time to yield 98-99% biodiesel. Coconut oil and palm oil, being edible oils, transesterification with 0.25 v/v methanol-oil ratio, 0.50% w/v KOH as at 58(±2) °C, 20 min reaction time for coconut oil and 0.25% v/v methanol-oil ratio, 0.50% w/v KOH as alkaline catalyst at 60(±2) °C for palm kernel oil will convert them to 98-99% biodiesel. The brake thermal efficiency of palm oil biodiesel was higher with lower brake specific fuel consumption, but rubber seed oil biodiesel(ROB) showed less emission (CO and NOx) compared to other biodiesels.  相似文献   

2.
The biodiesel (fatty acid methyl esters, FAME) was prepared by transesterification of the mixed oil (soybean oil and rapeseed oil) with sodium hydroxide (NaOH) as catalyst. The effects of mole ratio of methanol to oil, reaction temperature, catalyst amount and reaction time on the yield were studied. In order to decrease the operational temperature, a co-solvent (hexane) was added into the reactants and the conversion efficiency of the reaction was improved. The optimal reaction conditions were obtained by this experiment: methanol/oil mole ratio 5.0:1, reaction temperature 55 °C, catalyst amount 0.8 wt.% and reaction time 2.0 h. Under the optimum conditions, a 94% yield of methyl esters was reached ∼94%. The structure of the biodiesel was characterized by FT-IR spectroscopy. The sulfur content of biodiesel was determined by Inductively Coupled Plasma emission spectrometer (ICP), and the satisfied result was obtained. The properties of obtained biodiesel from mixed oil are close to commercial diesel fuel and is rated as a realistic fuel as an alternative to diesel. Production of biodiesel has positive impact on the utilization of agricultural and forestry products.  相似文献   

3.
Biofuel (e.g. biodiesel) has attracted increasing attention worldwide as blending component or direct replacement for fossil fuel in fuel energized engines. The substitution of petroleum-based diesel with biodiesel has already attained commercial value in many of the developed countries around the world. However, the use of biodiesel has not expanded in developing countries mostly due to the high production cost which is associated with the expensive high-quality virgin oil feedstocks. This research focuses on producing of biodiesel from low cost feedstocks such as used cooking oil (UCO) and animal fat (AF) via alkaline catalyzed transesterification process investigating the effects of process parameters, for example (i) molar ratio of feedstock to methanol (ii) catalyst concentration (iii) reaction temperature and (iv) reaction period on the biodiesel yield. The biodiesel was successfully produced via transesterification process from low cost feedstocks. It was also observed that the process parameters directly influenced the biodiesel yield. The optimum parameters for maximum biodiesel yields were found to be methanol/oil molar ratio of 6:1, catalyst concentration of 1.25 wt% of oil, reaction temperature of 65 °C, reaction period of 2 h and stirring speed of 150 rpm. The maximum biodiesel yields at the optimum conditions were 87.4%, 89% and 88.3% for beef fat, chicken fat and UCO, respectively. The results demonstrate high potential of producing economically viable biodiesel from low cost feedstocks with proper optimization of the process parameters.  相似文献   

4.
The present work reports the production of biodiesel from Silurus triostegus Heckel fish oil (STFO) through alkaline-catalyzed transesterification by using potassium hydroxide (KOH) as an alkaline catalyst with methanol. Chemical and physical properties of the extracted oil were determined. It was found that STFO has a low acid value (1.90 mg KOH/g oil); hence no pre-treatment such as acid esterification is required to produce the biodiesel. The influence of the experimental parameters such as KOH concentration (0.25–1.0% w/w of oil), methanol to oil molar ratio (3:1, 6:1, 9:1 and 12:1), reaction temperature (32, 45 and 60 °C), reaction duration (30, 60, 90 and 120 min), type of the catalyst (potassium or sodium hydroxide) and step multiplicity (single- and two-step transesterification) on the yield of the biodiesel were investigated. The maximum biodiesel yield (96%) was obtained under the optimized parameters of the transesterification (KOH 0.50% w/w, 6:1 methanol to oil, at 32 °C for 60 min). The properties of the produced biodiesel were found to conform with the ASTM standard, indicating its suitability for internal combustion engines. Blending of the produced biodiesel with petro diesel with various volume percentages was investigated as well.  相似文献   

5.
The utilization of non-edible feedstock such as moringa oleifera for biodiesel production attracts much attention owing to the issue with regards to avoiding a threat to food supplies. In this study, the optimization of biodiesel production parameters for moringa oleifera oil was carried out. The free fatty acid value of moringa oil was found to be 0.6%, rendering the one step alkaline transesterification method for converting moringa fatty acids to their methyl esters possible. The optimum production parameters: catalyst amount, alcohol amount, temperature, agitation speed and reaction time were determined experimentally and found to be: 1.0 wt% catalyst amount, 30 wt% methanol amount, 60 °C reaction temperature, 400 rpm agitation rate and 60 min reaction time. With these optimal conditions the conversion efficiency was 82%. The properties of the moringa biodiesel that was produced were observed to fall within the recommended international biodiesel standards. However, moringa biodiesel showed high values of cloud and pour points of 10 °C and 3 °C respectively, which present a problem as regards use in cold temperatures.  相似文献   

6.
Opium poppy, Papaver somniferum L., is one of the ancient herbal medicines. In addition to this medical use of latex, opium that is extracted from the immature seed capsule, it is also used illegally for pleasure. It is being produced in great quantities in Turkey especially in Afyonkarahisar city. The seeds of opium poppy plant have high ratio oil content. The opium poppy seeds and oil of these seeds are purely used as an ingredient in production of bakery products. In this study, biodiesel evaluation of the opium poppy seeds that have a high oil ratio is aimed. Alkali catalyzed (NaOH) single-phase reaction was preferred to produce biodiesel from opium poppy oil. The parameters like catalyst concentration, methanol ratio, reaction temperature were optimized and biodiesel production was obtained with high yield in reaction time of 75 min. The methyl ester content in the opium poppy oil biodiesel was determined with Gas Chromatography–Frame Ionized Detector (GC–FID). In optimum conditions, methanol ratio and catalyst concentration was determined as 20 wt% and 0.5 wt%, respectively. The reaction temperature was optimized as 60 °C. Biodiesel was obtained from the opium poppy oil under optimum conditions. Some basic features of the produced methyl esters were determined.  相似文献   

7.
The present work illustrates the parametric effects on biodiesel production from Hevea brasiliensis oil (HBO) using flamboyant pods derived carbonaceous heterogeneous catalyst. Activated carbon (AC) was prepared maintaining 500 °C for 1 h and steam activated at optimised values of activation time 1.5 h and temperature 350 °C. Carbonaceous support was impregnated with KOH at different AC/KOH ratios. The transesterification process was optimized and significant parameters affecting the biodiesel yield was identified by Taguchi method considering four parameters viz. reaction time, reaction temperature, methanol to oil ratio and catalyst loading. The physicochemical properties of Hevea brasiliensis methyl ester (HBME) were examined experimentally at optimised condition and found to meet the global American standards for testing and materials (ASTM). The optimum condition observed to yield 89.81% of biodiesel were: reaction time 60 min, reaction temperature 55 °C, catalyst loading 3.5wt% and methanol to oil ratio 15:1. Contribution factor revealed that among four parameters considered, catalyst loading and methanol to oil ratio have more prominent effect on biodiesel yield. The cost for preparing carbonaceous catalyst support was estimated and observed to be fairly impressive. Thus, Hevea brasiliensis oil (HBO) could be considered as suitable feedstock and flamboyant pods derived carbon as effective catalyst for production of biodiesel.  相似文献   

8.
In this study, potassium hydroxide-treated animal bones were employed? as a solid heterogeneous catalyst in transesterification of waste cooking oil. This catalyst was characterized by the Fourier-transform infrared spectroscopy (FTIR), and it displayed high-catalytic activity for biodiesel production. Optimum conditions for biodiesel production were catalyst loading 6.0% (w/w) of oil, methanol/oil molar ratio 9:1, calcination temperature 800°C, reaction temperature 65°C, and reaction time of 5 h, which gave maximum biodiesel yield of 84%. Reusability of the catalyst was also confirmed by repeated use of the same catalyst three times without losing much of its activity. Hence, calcined goat bones were found to be a potentially applicable catalyst for biodiesel production at industrial scale.  相似文献   

9.
In this paper, parameters affecting castor oil transesterification reaction were investigated. Applying four basic catalysts including NaOCH3, NaOH, KOCH3 and KOH the best one with maximum biodiesel yield was identified. Using Taguchi method consisting four parameters and three levels, the best experimental conditions were determined. Reaction temperature (25, 65 and 80 °C), mixing intensity (250, 400 and 600 rpm), alcohol/oil ratio (4:1, 6:1 and 8:1) and catalyst concentration (0.25, 0.35 and 0.5%) were selected as experimental parameters. It was concluded that reaction temperature and mixing intensity can be optimized. Using the optimum results, we proposed a kinetic model which resulted in establishing an equation for the beginning rate of transesterification reaction. Furthermore, applying ASTM D 976 correlation, minimum cetane number of produced biodiesel was determined as 37.1.  相似文献   

10.
Biodiesel production from crude rice bran oil and properties as fuel   总被引:1,自引:0,他引:1  
This research reported on the successfully production of biodiesel by transesterification of crude rice bran oil (RBO). The process included three-steps. Firstly, the acid value of RBO was reduced to below 1 mg KOH/g by two-steps pretreatment process in the presence of sulfuric acid catalyst. Secondly, the product prepared from the first process was carried out esterification with an alkaline catalyst. The influence of four variables on conversion efficiency to methyl ester, i.e., methanol/RBO molar ratio, catalyst amount, reaction temperature and reaction time, was studied at this stage. The content of methyl ester was analyzed by chromatographic analysis. Through orthogonal analysis of parameters in a four-factor and three-level test, the optimum reaction conditions for the transesterification were obtained: methanol/RBO molar ratio 6:1, usage amount of KOH 0.9% w/w, reaction temperature 60 °C and reaction time 60 min. In the third step, methyl ester prepared from the second processing step was refined to become biodiesel. Fuel properties of RBO biodiesel were studied and compared according to ASTM D6751-02 and DIN V51606 standards for biodiesel. Most fuel properties complied with the limits prescribed in the aforementioned standards. The consequent engine test showed a similar power output compared with regular diesel but consumption rate was slightly higher. Emission tests showed a marked decrease in CO, HC and PM, however, with a slight increase in NOX.  相似文献   

11.
Heterogeneous transesterification of waste cooking palm oil (WCPO) to biodiesel over Sr/ZrO2 catalyst and the optimization of the process have been investigated. Response surface methodology (RSM) was employed to study the relationships of methanol to oil molar ratio, catalyst loading, reaction time, and reaction temperature on methyl ester yield and free fatty acid conversion. The experiments were designed using central composite by applying 24 full factorial designs with two centre points. Transesterification of WCPO produced 79.7% maximum methyl ester yield at the optimum methanol to oil molar ratio = 29:1, catalyst loading = 2.7 wt%, reaction time = 87 min and reaction temperature = 115.5 °C.  相似文献   

12.
The aim of this research is to present the possibilities of the use of non-edible oils in biodiesel production, to consider the various methods for treatment of non-edible oils and to emphasise the influence of the operating and reaction conditions on the process rate and the ester yield. Because of biodegradability and non-toxicity biodiesel has become more attractive as alternative fuel. Biodiesel is produced mainly from vegetable oils by transesterification. For economic and social reasons, edible oils should be replaced by lower-cost and reliable feedstock for biodiesel production, such as non-edible plant oils. In this work biodiesel is produced from neem and Karanja by using butanol, propanol, ethanol and methanol as alcohols and KOH and NaOH as alkali catalysts by the transesterification process. The aim of this research is to analyse the different reaction parameters such as catalyst concentration, type of catalyst, types of alcohol, alcohol to oil molar ratio, reaction time and reaction temperature on the yield of biodiesel from non-edible oils. The maximum yield obtained was 95% with Karanja as oil with methanol and KOH as alkali catalyst at oil to alcohol molar ratio of 6:1 in 1 h at 60°C. Special attention is paid to the possibilities of producing biodiesel from non-edible oils.  相似文献   

13.
The present study deals with the production of biodiesel using waste fish oil. The research assesses the effect of the transesterification parameters on the biodiesel yield and its properties, including temperature (40–60 °C), molar ratio methanol to oil (3:1–9:1) and reaction time (30–90 min). The experimental results were fitted to complete quadratic models and optimized by response surface methodology. All the biodiesel samples presented a FAME content higher than 93 wt.% with a maximum, 95.39 wt.%, at 60 °C, 9:1 of methanol to oil ratio and 90 min. On the other hand, a maximum biodiesel yield was found at the same methanol to oil ratio and reaction time conditions but at lower temperature, 40 °C, which reduced the saponification of triglycerides by the alkaline catalyst employed. Adequate values of kinematic viscosity (measured at 30 °C) were obtained, with a minimum of 6.30 mm2/s obtained at 60 °C, 5.15:1 of methanol to oil ratio and 55.52 min. However, the oxidative stability of the biodiesels produced must be further improved by adding antioxidants because low values of IP, below 2.22 h, were obtained. Finally, satisfactory values of completion of melt onset temperature, ranging from 3.31 °C to 3.83 °C, were measured.  相似文献   

14.
In the present study, copper vanadium phosphate (CuVOP) with three-dimensional network structure was synthesized by hydrothermal method, and was characterized by Infrared spectrum (IR), elemental analysis (EA), EDXRF (energy dispersive X ray fluorescence) etc. Moreover, soybean oil was used as feedstock for producing biodiesel, and biodiesel was produced by CuVOP-catalyzed transesterification process. Response surface methodology was employed to statistically evaluate and optimize the conditions for the maximum conversion to biodiesel, and the effects of amount of catalyst, ratio of methanol to oil, reaction time and reaction temperature were investigated by the 24 full-factorial central composite design. The maximum conversion is obtained at amount of catalyst of 1.5%, methanol/oil molar ratio of 6.75, reaction temperature of 65 °C and reaction time of 5 h. Copper vanadium phosphate CuVOP resulted very active in the transesterification reaction for biodiesel production.  相似文献   

15.
The waste Capiz shell was utilized as raw material for catalyst production for biodiesel preparation. During calcination process, the calcium carbonate content in the waste capiz shell was converted to CaO. This calcium oxide was used as catalyst for transesterification reaction between palm oil and methanol to produce biodiesel. The biodiesel preparation was conducted under the following conditions: the mole ration between methanol and palm oil was 8:1, stirring speed was 700 rpm, and reaction temperature was 60 °C for 4, 5, and 6 h reaction time. The amount of catalyst was varied at 1, 2, 3, 4, and 5 wt %. The maximum yield of biodiesel was 93 ± 2.2%, obtained at 6 h of reaction time and 3 wt % of amount of catalyst. In order to examine the reusability of catalyst developed from waste of capiz (Amusium cristatum) shell, three transesterification reaction cycles were also performed.  相似文献   

16.
Biodiesel production via transesterification of waste cooking oil (WCO) with methanol using waste chicken bone-derived catalyst was investigated. The calcium carbonate content in the waste chicken bone was converted to calcium oxide (CaO) at a calcinations temperature of 800°C. The catalysts were prepared by calcination at 300–800°C for 5 h and catalyst characterization was carried out by X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) surface area measurement. CaO was used as catalyst for biodiesel production. The results of the optimization imply that the catalyst concentration of 3.0 wt%, methanol to oil ratio of 3:1, and reaction temperature of 80°C for 3 h provide the maximum values of yield in methyl ester production. Reusability of the catalyst from calcined waste chicken bone was studied for four times, with a good yield.  相似文献   

17.
The enzymatic production of biodiesel by transesterification of cottonseed oil was studied using low cost crude pancreatic lipase as catalyst in a batch system. The effects of the critical process parameters including water percentage, methanol:oil ratio, enzyme concentration, buffer pH and reaction temperature were determined. Maximum conversion of 75–80% was achieved after 4 h at 37 °C, pH 7.0 and with 1:15 M ratio of oil to methanol, 0.5% (wt of oil) enzyme and water concentration of 5% (wt of oil). Various organic solvents were tested among which a partially polar solvent (t-butanol) was found to be suitable for the reaction. The major fuel characteristics like specific gravity, kinematic viscosity, flash point and calorific value of the 20:80 blends (B20) of the fatty acid methyl esters with petroleum diesel conformed very closely to those of American Society for Testing Materials (ASTM) standards.  相似文献   

18.
In the present research work, Nerium oleander oil has been used as raw material for producing biodiesel using both ultrasonic transesterification and a magnetic stirrer method. A two-step transesterification process was carried out for optimum condition of 0.40% V/V methanol to oil ratio, 1% V/V H2SO4 catalyst, 55°C temperature, and 60 min reaction time followed by treatment with 0.2% V/V methanol to oil ratio, 1% V/W KOH alkaline catalyst, 55°C temperature, and 60 min reaction time. The process is repeated with an ultrasonic method at the frequency of 28 kHz using ultrasonic horn type reactor (50 W) for about 10–15 min. Biodiesel obtained from ultrasonic method and magnetic stirrer was then compared for their percentage yield and physiochemical properties. Ultrasonic transesterification process gave a maximum yield of 97% by weight of oleander biodiesel along with improved physiochemical characteristics. Therefore, it is concluded that ultrasonic method is the most effective method for converting crude oleander oil into biodiesel.  相似文献   

19.
A carbon-based solid acid catalyst was prepared by the sulfonation of carbonized vegetable oil asphalt. This catalyst was employed to simultaneously catalyze esterification and transesterification to synthesis biodiesel when a waste vegetable oil with large amounts of free fatty acids (FFAs) was used as feedstock. The physical and chemical properties of this catalyst were characterized by a variety of techniques. The maximum conversion of triglyceride and FFA reached 80.5 wt.% and 94.8 wt.% after 4.5 h at 220 °C, when using a 16.8 M ratio of methanol to oil and 0.2 wt.% of catalyst to oil. The high catalytic activity and stability of this catalyst was related to its high acid site density (–OH, Brönsted acid sites), hydrophobicity that prevented the hydration of –OH species, hydrophilic functional groups (–SO3H) that gave improved accessibility of methanol to the triglyceride and FFAs, and large pores that provided more acid sites for the reactants.  相似文献   

20.
ABSTRACT

The major drawback of the wide applicability of biodiesel is its price compared to the conventional petro-diesel. The feedstock and the applied catalyst in the transesterification reaction are the main contributor for the overall cost of the biodiesel production. Thus, this study summarizes the optimization of a batch transesterification reaction of used domestic waste oil (UDWO) with methanol using CaO, which can be easily prepared from different cheap and readily available natural sources. Quadratic model equations were elucidated describing the effect of methanol:oil molar ratio, CaO concentration wt.%, reaction temperature °C, reaction time h, and mixing rate rpm on biodiesel yield and conversion percentage. The optimum operating conditions were found to be competitive with those of the high-cost immobilized enzyme Novozym435. An overall acceptable agreement was achieved between the produced biodiesel, its blends with petro-diesel and the available commercial petro-diesel, and the international fuel standards. A precise and reliable logarithmic mathematical model was predicted correlating the production of pure high-quality biodiesel yield with the conversion percentage which were measured based on the fatty acid methylester content and decrease in viscosity, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号