首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 2-year study was conducted during the summer months (May to September) to test the effectiveness of feeding Lactobacillus acidophilus strain NP51 on the proportion of cattle shedding Escherichia coli O157:H7 in the feces and evaluate the effect of the treatment on finishing performance. Steers (n = 448) were assigned randomly to pens, and pens of cattle were assigned randomly to NP51 supplementation or no supplementation (control). NP51 products were mixed with water and applied as the feed was mixed daily in treatment-designated trucks at the rate of 10(9) CFU per steer. Fecal samples were collected (n = 3,360) from the rectum from each animal every 3 weeks, and E. coli O157:H7 was isolated by standard procedures, using selective enrichment, immunomagnetic separation, and PCR confirmation. The outcome variable was the recovery of E. coli O157:H7 from feces, and was modeled using logistic regression accounting for year, repeated measures of pens of cattle, and block. No significant differences were detected for gain, intakes, or feed efficiency of control or NP51-fed steers. The probability for cattle to shed E. coli O157:H7 varied significantly between 2002 and 2003 (P = 0.004). In 2002 and 2003, the probability for NP51-treated steers to shed E. coli O157:H7 over the test periods was 13 and 21%, respectively, compared with 21 and 28% among controls. Over the 2 years, NP51-treated steers were 35% less likely to shed E. coli O157: H7 than were steers in untreated pens (odds ratio = 0.58, P = 0.008). This study is consistent with previous reports that feeding NP51 is effective in reducing E. coli O157:H7 fecal shedding in feedlot cattle.  相似文献   

2.
This study was conducted to develop an experimental model that could assess the ability of Escherichia coli O157:H7-inoculated fecal pats to mimic a super shedder (>10(4) CFU/g of feces) within a feedlot environment. The day before the study began, 48 steers that had been negative for E. coli O157:H7 in feces for three consecutive weeks were sorted into three treatment groups, with two replicate pens per treatment and 8 steers per pen. Steers within the pens (20.50 by 10.75 m) were exposed to control feces or feces inoculated with two levels of a mixture of five strains of nalidixic acid-resistant E. coli O157:H7 (low level, 10(2) CFU/g; high level, 10(5) CFU/g). Five 300-g fecal pats were introduced into the pens twice daily (10:00 a.m. and 2:30 p.m.) on days 0 through 6 and days 14 through 20. Pats were placed in the pen at random locations to mimic defecation of a steer within the pen. Fecal grab samples, hide swab samples (500-cm2 area of the rump), natural fecal pat samples (freshly voided), and rope samples (1.22-m-long manila rope) where obtained at multiple times during the 49-day trial to evaluate the spread of nalidixic acid-resistant E. coli O157:H7 throughout the feedlot environment and among penmates. Immunomagnetic separation and selective media were used to detect E. coli O157:H7. Nalidixic acid-resistant E. coli O157:H7 was detected in 13 high-level treatment fecal grab samples, 7 high-level treatment hide swab samples, 1 low-level hide swab sample, and 2 high-level rope samples. For both fecal grab and hide swab samples, the overall prevalence of E. coli O157:H7 in the high-level group was greater (P < 0.01) than that for the pooled low-level and control groups. Addition of inoculated fecal pats to pens increased transmission of E. coli O157:H7 among penmates, but cattle that acquired E. coli O157:H7 shed the bacterium for only a short time at low levels. Transmission of E. coli O157:H7 from the feces of super shedders to naive penmates may contribute to the observed transient nature of shedding of E. coli O157:H7 among feedlot cattle.  相似文献   

3.
Fecal shedding of Escherichia coli O157:H7, the prevalence of Escherichia coli O157:H7 in pens and on carcasses and hides, and cattle performance as a result of daily dietary supplementation with Lactobacillus-based direct-fed microbials (DFMs) were evaluated in a feeding trial involving 180 beef steers. Steers were evaluated for shedding of E. coli O157:H7 by an immunomagnetic separation technique on arrival at the feedlot, just before treatment with the DFMs, and every 14 days thereafter until slaughter. Composite pen fecal samples were collected every 14 days (alternating weeks with animal testing), and prevalence on hides and carcasses at slaughter was also evaluated. Feedlot performance (body weight gain and feed intake) was measured for the period during which the DFMs were fed. Gain efficiency was calculated as the ratio of weight gain to feed intake. Lactobacillus acidophilus NPC 747 decreased (P < 0.01) the shedding of E. coli O157:H7 in the feces of individual cattle during the feeding period. E. coli O157:H7 was approximately twice as likely to be detected in control animal samples as in samples from animals receiving L. acidophilus NPC 747. In addition, DFM supplementation decreased (P < 0.05) the number of E. coli O157:H7-positive hide samples at harvest and the number of pens testing positive for the pathogen. Body weight gains (on a live or carcass basis) and feed intakes during the DFM supplementation period did not differ among treatments. Gain efficiencies on a live-weight basis did not differ among treatments, but carcass-based gain/feed ratios tended (P < 0.06) to be better for animals receiving the two DFM treatments than for control animals. The results of this study suggest that the feeding of a Lactobacillus-based DFM to cattle will decrease, but not eliminate, fecal shedding of E. coli O157:H7, as well as contamination on hides, without detrimental effects on performance.  相似文献   

4.
The objective was to describe variability in prevalence, incidence, and duration of fecal shedding of naturally occurring E. coli O157:H7 by a group of feedlot cattle over time. One hundred steers, randomly assigned to 10 pens, were fed a high-concentrate finishing diet for 136 days (19 weeks). Rectal feces from each animal were tested for E. coli O157:H7 every week for 19 weeks. E. coli O157:H7 was recovered from each animal that completed the study and was detected from at least one animal every week. Average pen prevalence of cattle shedding E. coli O157:H7 varied significantly over time (P < 0.0001) and across pens (P < 0.0001), ranging from 1 to 80%. Pairwise comparisons of mean pen prevalence of E. coli O157:H7 between weeks and estimation of the predicted probability of an incident case of E. coli O157:H7 over time allowed the definition of three distinct phases--namely, the preepidemic, epidemic, and postepidemic periods. Average pen prevalence varied significantly over time (P < 0.01) and across pens (P < 0.001) for all time periods. The odds of an incident case were significantly greater during epidemic and postepidemic periods relative to the preepidemic period (P = 0.0002 and P = 0.03, respectively). Duration of infection was significantly longer for first or second infections that began during epidemic or postepidemic periods relative to the preepidemic period (P < 0.001). Both incidence and duration of shedding peaked during the epidemic period. Pen-level prevalence of cattle shedding E. coli O157:H7 was affected by both incidence and duration of shedding and could be explained by time- or pen-dependent risk factors, or both.  相似文献   

5.
A clinical trial was conducted to test the effect of a vaccine product containing type III secreted proteins of Escherichia coli O157:H7 on the probability that feedlot steers shed E. coli O157:H7 in feces. Six hundred eight same-source steers were utilized. Of these, 480 steers were assigned randomly to 60 pens (eight head per pen) and to one of four vaccination treatments (120 cattle per treatment, two head per treatment per pen). The four treatments were (i) no vaccination; (ii) one dose, vaccinated once at reimplant (day 42); (iii) two doses, vaccinated on arrival (day 0) and again at reimplant (day 42); and (iv) three doses, vaccinated on arrival (day 0), on day 21, and again at reimplant (day 42). The remaining 128 steers were assigned randomly to 12 pens within the same feedlot to serve as unvaccinated external controls. The probability of detecting E. coli O157:H7 among cattle receiving different doses of vaccine was compared with that of unvaccinated external control cattle, accounting for clustering by repeated measures, block, and pen and fixed effects of vaccine, corn product, and test period. Vaccine efficacy of receiving one, two, and three doses of vaccine was 68, 66, and 73%, respectively, compared with cattle in pens not receiving vaccine. Cattle receiving three doses of vaccine were significantly less likely to shed E. coli O157:H7 than unvaccinated cattle within the same pen. Unvaccinated cattle housed with vaccinated cattle were 59% less likely to shed E. coli O157:H7 than cattle in pens not receiving vaccine, likely because they benefited from herd immunity. This study supports the hypothesis that vaccination with this vaccine product effectively reduces the probability for cattle to shed E. coli O157:H7. There was no indication that the vaccine affected performance or carcass quality. In addition, we found that vaccinating a majority of cattle within a pen offered a significant protective effect (herd immunity) to unvaccinated cattle within the same pen.  相似文献   

6.
On-farm methods of monitoring Escherichia coli O157:H7 were assessed in 30 experimentally inoculated steers housed in four pens over a 12-week period and in 202,878 naturally colonized feedlot cattle housed in 1,160 pens on four commercial Alberta feedlots over a 1-year period. In the challenge study, yearling steers were experimentally inoculated with 10(10) CFU of a four-strain mixture of nalidixic acid-resistant E. coli O157:H7. After inoculation, shedding of E. coli O157:H7 was monitored weekly by collecting rectal fecal samples (FEC), oral swabs (ORL), pooled fecal pats (PAT), manila ropes (ROP) orally accessed for 4 h, feed samples, water, and water bowl interface. Collection of FEC from all animals per pen provided superior isolation (P < 0.01) of E. coli O157:H7 compared with other methods, although labor and animal restraint requirements for fecal sample collection were high. When one sample was collected per pen of animals, E. coli O157:H7 was more likely to be detected from the ROP than from the FEC, PAT, or ORL (P < 0.001). In the commercial feedlot study, samples were limited to ROP and PAT, and E. coli O157:H7 was isolated in 18.8% of PAT and 6.8% of ROP samples. However, for animals that had been resident in the feedlot pen for at least 1 month, isolation of E. coli O157:H7 from ROP was not different from that from PAT (P = 0.35). Pens of animals on feed for <30 days were six times more likely to shed E. coli O157:H7 than were animals on feed for >30 days. However, change in diet did not affect shedding of the organism (P > 0.23) provided that animals had acclimated to the feedlot for 1 month or longer. Findings from this study indicate the importance of introduction of mitigation strategies early in the feeding period to reduce transference and the degree to which E. coli O157:H7 is shed into the environment.  相似文献   

7.
Beef steers (n = 252) were used to evaluate the effects of dietary supplement on fecal shedding of Escherichia coli O157:H7. Seven pens of 9 steers (63 steers per treatment) were fed diets supplemented with or without yeast culture (YC) or monensin (MON) and their combination (YC × MON). YC and MON were offered at 2.8 g/kg and 33 mg/kg of dry matter intake, respectively. Environmental sponge samples (from each pen floor, feed bunk, and water trough) were collected on day 0. Rectal fecal grab samples were collected on days 0, 28, 56, 84, 110, and 125. Samples were collected and pooled by pen and analyzed for presumptive E. coli O157:H7 colonies, which were confirmed by a multiplex PCR assay and characterized by pulsed-field gel electrophoresis (PFGE) typing. On day 0, E. coli O157:H7 was detected in 7.0% of feed bunk samples and 14.3% of pen floor samples but in none of the water trough samples. The 71.4% prevalence of E. coli O157:H7 in fecal samples on day 0 decreased significantly (P < 0.05) over time. E. coli O157:H7 fecal shedding was not associated with dietary treatment (P > 0.05); however, in cattle fed YC and YC × MON fecal shedding was 0% by day 28. Eight Xba I PFGE subtypes were identified, and a predominant subtype and three closely related subtypes (differing by three or fewer bands) accounted for 78.7% of environmental and fecal isolates characterized. Results from this study indicate that feeding YC to cattle may numerically decrease but not eliminate fecal shedding of E. coli O157:H7 at the onset of treatment and that certain E. coli O157 subtypes found in the feedlot environment may persist in feedlot cattle.  相似文献   

8.
Cattle are an important reservoir of Escherichia coli O157:H7, which can lead to contamination of food and water, and subsequent human disease. E. coli O157:H7 shedding in cattle has been reported as seasonal, with more animals shedding during summer and early fall than during winter. North Dakota has relatively cold weather, especially in winter and early spring, compared with many other regions of the United States. The objective was to assess fecal shedding of E. coli O157:H7 in North Dakota feedlot cattle over the fall, winter, and early spring. One hundred forty-four steers were assigned randomly to 24 pens on arrival at the feedlot. Samples of rectal feces were obtained from each steer four times (October and November 2003, and March and April 2004) during finishing. On arrival (October 2003), 2 (1.4%) of 144 cattle were shedding E. coli O157:H7. The shedding increased significantly to 10 (6.9%) of 144 after 28 days (November 2003), to 76 (53%) of 143 at the third sampling (March 2004), and dropped significantly to 30 (21%) of 143 at the fourth (last) sampling (March 2004) before slaughter. Unfortunately, we were unable to sample the cattle during winter because of the extreme weather conditions. Sampling time significantly (P < 0.0001) influenced variability in E. coli O157:H7 shedding, whereas herd (P = 0.08) did not. The prevalence of E. coli O157:H7 shedding in North Dakota steers in fall and early spring was comparable to what has been reported in other parts of the United States with relatively warmer weather. Further research into E. coli O157:H7 shedding patterns during extreme weather such as North Dakota winters is warranted in order to fully assess the seasonal effect on the risk level of this organism.  相似文献   

9.
Three experiments were conducted to evaluate the influence of vitamin D on fecal shedding of Escherichia coli O157:H7 in cattle. In the first experiment, two groups of cattle (beef and dairy) were assigned to a control treatment or to receive 0.5 × 10(6) IU vitamin D per day via oral bolus for 10 days. Fecal samples were collected before and throughout the dosing period for culture of E. coli O157:H7. No differences were observed for fecal shedding of E. coli O157:H7 among treatments for either beef or dairy animals. Serum concentrations of vitamin D were markedly higher (P < 0.0001) in treated beef cattle but only tended to be higher (P = 0.09) in the dairy cattle. In the second experiment, three successive vitamin D dosages (2,400, 4,800, and 9,600 IU/day; 14 days each) were administered to 14 dairy steers (7 steers served as controls), fecal samples were collected daily, and serum samples were collected weekly throughout the 42-day experimental period. No significant differences in fecal prevalence or serum vitamin D concentrations were observed for any of the vitamin D dosages. A third experiment sampled feedlot cattle (winter and summer) to determine whether serum vitamin D concentrations were correlated with fecal shedding of E. coli O157:H7. A fecal sample and a blood sample were obtained in each season from 60 randomly selected animals (total of 120 fecal samples and 120 corresponding blood samples). As expected, season was highly correlated (r = 0.66) with serum vitamin D concentration with higher concentrations (P < 0.01) observed in the summer. E. coli O157:H7 prevalence (percentage of positive samples) was not highly correlated (r = 0.16) with season, although the correlation tended to be significant (P = 0.08). The proportion of cattle shedding E. coli O157:H7 was 16.7 and 6.7% for the summer and winter collections, respectively. Results of this research do not support a correlation between vitamin D intake and E. coli O157:H7 shedding in cattle.  相似文献   

10.
Two sampling methods (rectoanal swabs and rectal fecal grabs) were compared for their recovery of Escherichia coli O157:H7 from feedlot cattle. Samples were collected from 144 steers four times during the finishing period by swabbing the rectoanal mucosa with cotton swabs and immediately obtaining feces from the rectum of each individual steer. The number of steers with detectable E. coli O157:H7 increased from 2 of 144 (1.4%) cattle on arrival at the feedlot to 10 of 144 (6.9%) after 1 month, 76 of 143 (52.8%) after 7 months, and 30 of 143 (20.8%) at the last sampling time before slaughter. Wilcoxon signed-rank tests indicated that the two sampling methods gave different results for sampling times 3 and 4 (P < 0.05) but not for sampling time 2 (P = 0.16). Agreement between the two sampling methods was poor (kappa < 0.2) for three of the four sampling times and moderate (kappa = 0.6) for one sampling time, an indication that in this study rectoanal swabs usually were less sensitive than rectal fecal grabs for detection of E. coli O157:H7 in cattle. Overall, the herd of origin was not significantly associated with E. coli O157:H7 results, but the weight of the steers was. Further investigation is needed to determine the effects of potential confounding factors (e.g., size and type of swab, consistency of feces, site sampled, and swabbing technique) that might influence the sensitivity of swabs in recovering E. coli O157:H7 from the rectoanal mucosa of cattle.  相似文献   

11.
Cattle are an asymptomatic reservoir of Escherichia coli O157:H7, but the bacterial colonization and shedding patterns are poorly understood. The prevalence and shedding of this human pathogen have been reported to be seasonal with rates typically increasing during warm months. The objectives of this study were (i) to assess the prevalence of E. coli O157:H7 in feces of feedlot cattle in Kansas during summer, fall, and winter months, and (ii) to characterize E. coli O157:H7 by screening for virulence factors. Of 891 fecal samples collected, 82 (9.2%) were positive for E. coli O157:H7. No significant differences in prevalence were detected among summer, fall, and winter months. The highest monthly prevalence (18.1%) was detected in February. All tested isolates were positive for stx2 (Shiga toxin 2) and eaeA (intimin) genes; 14 isolates (12.8%) also carried stx1. Our results indicate the prevalence of E. coli O157:H7 in beef cattle feces is not necessarily season dependent.  相似文献   

12.
The aim of this study was to investigate fecal shedding and transmission of E. coli O157 in cohorts of cattle within a feedlot, to assess subsequent contamination of carcasses with this pathogen and to identify risk factors associated with fecal shedding of E. coli O157. A cohort of 133 heifers housed infour adjacent pens was examined over a five month period, from entering the feedlot to slaughter. Individual rectal fecal samples and pen environmental samples were taken at monthly intervals. The entire outer and inner surfaces of a carcass side of each animal were swabbed immediately following slaughter.
E. coli O157 was isolated from 136 (23%) of the 600 rectal fecal samples; 96% of which contained virulent markers. One hundred and sixty environmental samples were examined and E. coli O157 was isolated from 46 (29%), all of which contained virulent markers. E. coli O157 was not isolated from any of the dressed carcasses. The prevalence of E. coli O157 fecal shedding may be related to the pen and E. coli O157 contamination of the pen floor feces, water trough and feed.
E. coli O157 should be considered as a pathogen shed in the feces of a substantial proportion of feedlot cattle. However, with good hygienic practice at harvest, a very low level of this pathogen can be achieved on dressed carcasses.  相似文献   

13.
This study was designed to describe the percentage of cattle shedding Escherichia coli O157:H7 in Midwestern U.S. feedlots and to discover relationships between the point prevalence of cattle shedding the organism and the characteristics of those cattle or the conditions of their pens. Cattle from 29 pens of five Midwestern feedlots were each sampled once between June and September 1999. Feces were collected from the rectum of each animal in each pen. Concurrently, samples of water were collected from the water tank, and partially consumed feed was collected from the feedbunk of each pen. Characteristics of the cattle and conditions of each pen that might have affected the prevalence of cattle shedding E. coli O157:H7 were recorded. These factors included the number of cattle; the number of days on feed; and the average body weight, class, and sex of the cattle. In addition, the temperature and pH of the tank water were determined, and the cleanliness of the tank water and the condition of the pen floor were subjectively assessed. The samples of feces, feed, and water were tested for the presence of E. coli O157:H7. E. coli O157:H7 was isolated from the feces of 719 of 3,162 cattle tested (23%), including at least one animal from each of the 29 pens. The percentage of cattle in a pen shedding E. coli O157:H7 did not differ between feedyards, but it did vary widely within feedyards. A higher prevalence of cattle shed E. coli O157:H7 from muddy pen conditions than cattle from pens in normal condition. The results of this study suggest that E. coli O157:H7 should be considered common to groups of feedlot cattle housed together in pens and that the condition of the pen floor may influence the prevalence of cattle shedding the organism.  相似文献   

14.
Preharvest intervention strategies to reduce Escherichia coli O157:H7 in cattle have been sought as a means to reduce human foodborne illness. A blinded clinical trial was conducted to test the effect of a vaccine product on the probability that feedlot steers, under conditions of natural exposure, shed E. coli O157:H7 in feces, are colonized by this organism in the terminal rectum, or develop a humoral response to the respective antigens. Steers (n = 288) were assigned randomly to 36 pens (eight head per pen), and pens were randomized to vaccination treatment in a balanced fashion within six dietary treatments of an unrelated nutrition study. Treatments included vaccination or placebo (three doses at 3-week intervals). Fecal samples for culture (n = 1,410) were collected from the rectum of each steer on pretreatment day 0 and posttreatment days 14, 28, 42, and 56. Terminal rectum mucosal (TRM) cells were aseptically collected for culture at harvest (day 57 posttreatment) by scraping the mucosa 3.0 to 5.5 cm proximal to the rectoanal junction. E. coli O157:H7 was isolated and identified with selective enrichment, immunomagnetic separation, and PCR confirmation. Vaccinated cattle were 98.3% less likely to be colonized by E. coli O157:H7 in TRM cells (odds ratio = 0.014, P < 0.0001). Diet was also associated with the probability of cattle being colonized (P = 0.04). Vaccinated cattle demonstrated significant humoral responses to Tir and O157 lipopolysaccharide. These results provide evidence that this vaccine product reduces E. coli O157:H7 colonization of the terminal rectum of feedlot beef cattle under conditions of natural exposure, a first step in its evaluation as an effective intervention for food and environmental safety.  相似文献   

15.
Calves inoculated with Escherichia coli O157:H7 and fed either a high-roughage or high-concentrate diet were evaluated for rumen proliferation and fecal shedding of E. coli O157:H7. Calves fed the high-roughage diet had lower mean rumen volatile fatty acid concentrations and higher rumen pH values than did calves fed the high-concentrate diet. Despite these differences in rumen conditions, the calves fed the high-roughage diet did not have greater rumen populations of E. coli O157: H7 and did not exhibit increased or longer fecal shedding compared with the calves fed the high-concentrate diet. Two calves shedding the highest mean concentrations of E. coli O157:H7 were both fed the high-concentrate diet. There was a significant (P < 0.05) positive correlation between fecal shedding and rumen volatile fatty acid concentration in calves fed a high-concentrate diet. The effects of diet on E. coli O157:H7 proliferation and acid resistance were investigated using an in vitro rumen fermentation system. Rumen fluid collected from steers fed a high-roughage diet, but not from steers fed a high-concentrate diet, supported the proliferation of E. coli O157:H7. Rumen fluid from steers fed a high-concentrate diet rapidly induced acid resistance in E. coli O157:H7. The impact of diet on fecal shedding of E. coli O157:H7 is still unclear and may depend on dietary effects on fermentation in the colon and on diet-induced changes in the resident microflora. However, rapid development of acid tolerance by E. coli O157:H7 in the rumens of calves fed high-concentrate diets, allowing larger populations to survive passage through the acidic abomasum to proliferate in the colon, may be one factor that influences fecal shedding in cattle on feed.  相似文献   

16.
Although Escherichia coli are commensal organisms that reside within the host gut, some pathogenic strains of E. coli can cause hemorrhagic colitis in humans. The most notable enterohemorrhagic E. coli (EHEC) strain is O157:H7. Cattle are asymptomatic natural reservoirs of E. coli O157:H7, and it has been reported that as many as 30% of all cattle are carriers of this pathogen, and in some circumstances this can be as high as 80%. Feedlot and high-producing dairy cattle are fed large grain rations in order to increase feed efficiency. When cattle are fed large grain rations, some starch escapes ruminal microbial degradation and passes to the hind-gut where it is fermented. EHEC are capable of fermenting sugars released from starch breakdown in the colon, and populations of E. coli have been shown to be higher in grain fed cattle, and this has been correlated with E. coli O157:H7 shedding in barley fed cattle. When cattle were abruptly switched from a high grain (corn) diet to a forage diet, generic E. coli populations declined 1000-fold within 5 d, and the ability of the fecal generic E. coli population to survive an acid shock similar to the human gastric stomach decreased. Other researchers have shown that a switch from grain to hay caused a smaller decrease in E. coli populations, but did not observe the same effect on gastric shock survivability. In a study that used cattle naturally infected with E. coli O157:H7, fewer cattle shed E. coli O157:H7 when switched from a feedlot ration to a forage-based diet compared with cattle continuously fed a feedlot ration. Results indicate that switching cattle from grain to forage could potentially reduce EHEC populations in cattle prior to slaughter; however the economic impact of this needs to be examined.  相似文献   

17.
To test the influence of transportation stress and temperament on shedding of Escherichia coli O157:H7, cattle (n=150) were classified at various stages of production as Excitable, Intermediate or Calm based on a variety of disposition scores. Presence of E. coli O157:H7 was determined by rectal swabs from live animals and from colons collected postmortem. Percentage of cattle shedding E. coli O157:H7 at arrival at the feedlot was approximately equal among temperament groups. Before shipment to the processing facility, a higher (P=0.03) proportion of cattle from the Calm group shed E. coli O157:H7 compared to the other temperament groups. When pooled across all sampling periods, cattle from the Calm group had a greater percentage test positive for E. coli O157:H7. Neither the acute stressor of transportation nor a more excitable temperament led to increased shedding of E. coli O157:H7 in cattle.  相似文献   

18.
Monensin and tylosin have activity against gram-positive bacteria, and it has been theorized that their effects on the intestinal environment may promote proliferation of gram-negative bacteria such as Escherichia coli. Effects of these antibiotics on the shedding of E. coli O157:H7 were studied in a feedlot environment, using 32 finishing steers. A diet containing 85% barley grain, 10% barley silage, and 5% supplement was amended with 33 ppm monensin, 11 ppm tylosin, both of these additives, or no additives (control). All steers were orally inoculated with 10(10) CFU of a mixture of four strains of nalidixic acid-resistant E. coli O157:H7. Fecal (grab), oral (mouth swab) and water, water-water bowl interface, feed, and pen floor fecal pat samples were collected weekly for 12 weeks. Prevalence of E. coli O157:H7-positive fecal grab samples did not differ (P = 0.26) among treatments, nor did the rate (P = 0.81) or duration (P = 0.85) of shedding of the organism. Fecal grab samples were positive for E. coli O157:H7 more frequently (P < 0.001) than were oral swabs. More (P = 0.02) E. coli O157:H7-positive oral swabs were recovered from the tylosin group than from controls. E. coli O157:H7 was not detected in any of 47 water samples, but was present in 1 of 47 water bowl swabs, 7 of 48 feed samples, and 36 of 48 fecal pats. Pulsed-field gel electrophoresis suggested that differences existed among inoculated strains in their ability to persist in animals and in the environment. However, this study revealed no evidence that dietary inclusion of monensin or tylosin, alone or in combination, increased fecal shedding of E. coli O157:H7 or its persistence in the environment.  相似文献   

19.
Ruminant livestock, particularly cattle, is considered the primary reservoir of Escherichia coli O157:H7. This study examines the transmission of E. coli O157:H7 within groups of cattle during winter housing. Holstein Friesian steers were grouped in six pens of five animals. An animal inoculated with and proven to be shedding a marked strain of E. coli O157: H7 was introduced into each pen. Fecal (rectal swabs) and hide samples (900 cm2 from the right rump) were taken from the 36 animals throughout the study. Water, feed, and gate or partition samples from each pen were also examined. Within 24 h of introducing the inoculated animals into the pens, samples collected from the drinking water, pen barriers, and animal hides were positive for the pathogen. Within 48 h, the hides of 20 (66%) of 30 cohort animals from the six pens were contaminated with E. coli O157:H7. The first positive fecal samples from the noninoculated cohort animals were detected 3 days after the introduction of the inoculated steers. During the 23 days of the study, 15 of 30 cohort animals shed the marked E. coli O157:H7 strain in their feces on at least one occasion. Animal behavior in the pens was monitored during a 12-h period using closed circuit television cameras. The camera footage showed an average of 13 instances of animal grooming in each pen per hour. The study suggests that transmission of E. coli O157:H7 between animals may occur following ingestion of the pathogen at low levels and that animal hide may be an important source of transmission.  相似文献   

20.
The pathogenicity and fecal shedding of enterohemorrhagic Escherichia coli (EHEC) O26:H11, O111:NM, and O157:H7 were compared in calves (< 1 week of age) with or without prior treatment with probiotic bacteria (competitive exclusion E. coli). Three groups of 12 to 14 calves were used for these treatments. Half of the calves in each group were perorally administered 10(10) CFU of probiotic bacteria per calf, and, 2 days thereafter, 10(8) CFU of a five-strain mixture with one of the three EHEC serotypes per calf were administered to each calf. None of the EHEC serotypes caused clinical disease,and neither gross nor microscopic lesions attributable to EHEC were detected in control or probiotic-treated calves at necropsy. In calves administered E. coli O157:H7, fecal shedding was greatly reduced (> 6 log10 CFU/g) by 8 days after administration, and there was no significant difference (P > 0.05) in fecal shedding of E. coli O157:H7 between probiotic-treated and untreated control groups at that time. In contrast, control calves perorally administered E. coil of serotypes O111:NM or O26:H11 continued to shed substantial populations (10(2.1) to 10(6) CFU/g of feces and 10(2.5) to 10(4.9) CFU/g of feces, respectively) throughout 7 days postadministration of EHEC. In both groups administered either E. coli O111:NM or O26:H11, significantly less (P < 0.05) EHEC was isolated from feces at 7 days postadministration of EHEC and at necropsy from theprobiotic-treated group than from the untreated control group. Overall, neonatal calves shed in the feces from 1 to 7 days following peroral administration of EHEC greater populations of E. coli O111:NM and O26:H111 than E. coli O157:H7. In addition, treatment of calves with probiotic E. coli reduced fecal shedding of E. coli O111:NM and O26:H11 in most calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号