首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The low-temperature catalytic dehydration of methanol to dimethyl ether (DME) has been analyzed. Efficient sulfocationic catalysts for the liquid-phase dehydration of methanol within a temperature range of 90–150°C and polyoxide catalysts for the gas-phase dehydration of methanol within a temperature range of 130–220°C have been selected. Kinetic models of these reactions are constructed, and their constants are determined from the results of kinetic experiments. The constructed models are shown to be adequate to experiment. The selected catalysts open additional opportunities for intensifying the processes of DME synthesis from methanol and syngas, abruptly reducing the primecost of the target product, dimethyl ether.  相似文献   

2.
Liquid phase methanol and dimethyl ether synthesis from syngas   总被引:4,自引:0,他引:4  
The Liquid Phase Methanol Synthesis (LPMeOHTM) process has been investigated in our laboratories since 1982The reaction chemistry of liquid phase methanol synthesis over commercial Cu/ZnO/Al2O3 catalysts, established for diverse feed gas conditions including H2-rich, CO-rich, CO2-rich, and CO-free environments, is predominantly based on the CO2 hydrogenation reaction and the forward water-gas shift reactionImportant aspects of the liquid phase methanol synthesis investigated in this in-depth study include global kinetic rate expressions, external mass transfer mechanisms and rates, correlation for the overall gas-to-liquid mass transfer rate coefficient, computation of the multicomponent phase equilibrium and prediction of the ultimate and isolated chemical equilibrium compositions, thermal stability analysis of the liquid phase methanol synthesis reactor, investigation of pore diffusion in the methanol catalyst, and elucidation of catalyst deactivation/regenerationThese studies were conducted in a mechanically agitated slurry reactor as well as in a liquid entrained reactorA novel liquid phase process for co-production of dimethyl ether (DME) and methanol has also been developedThe process is based on dual-catalytic synthesis in a single reactor stage, where the methanol synthesis and water gas shift reactions takes place over Cu/ZnO/Al2O3 catalysts and the in-situ methanol dehydration reaction takes place over -Al2O3 catalystCo-production of DME and methanol can increase the single-stage reactor productivity by as much as 80%. By varying the mass ratios of methanol synthesis catalyst to methanol dehydration catalyst, it is possible to co-produce DME and methanol in any fixed proportion, from 5% DME to 95% DMEAlso, dual catalysts exhibit higher activity, and more importantly these activities are sustained for a longer catalyst on-stream life by alleviating catalyst deactivation.  相似文献   

3.
The kinetic behavior of a commercial γ-Al2O3 catalyst for the methanol to dimethyl ether (DME) dehydration reaction has been investigated using a differential fixed bed reactor at the pressure range 1–16 barg within a temperature range of 260–380 °C. The experimental runs were performed in a wide range of feed to water ratios. The experiments were designed by general full factorial design (GEFD) and a novel rate equation has been developed which exhibited the best fitting with our experimental data. Based on the analysis of variance (ANOVA), the following order of importance for operating conditions was obtained when the objective function is the yield of DME: Temperature >Water % in feed >Pressure. In addition, the optimum operating conditions for the maximum yield of DME, were found at T= 380°C, P=16 barg and zero wt% of water in the feed.  相似文献   

4.
The thermodynamics involved in the catalytic hydrogenation of CO2 have been examined extensively. By assuming that methanol and dimethyl ether (DME) are the main products, two reaction systems each consisting of two pararell reactions were analyzed and compared in terms of the equilibrium yield and selectivity of the useful products, methanol and DME. The calculation results demonstrated that the production of DME allows much higher oxygenate yield and selectivity than that of methanol.  相似文献   

5.
陈鹏  古共伟 《应用化工》2006,35(Z1):355-366
简述了二甲醚的性质和主要的几种合成工艺,较详细介绍了西南化工研究设计院技术的工艺特点和工业化成果.  相似文献   

6.
CO2催化加氢合成甲醇、二甲醚是解决CO2减排的有效途径之一,具有环保、经济等意义。本文从新的视角综述了CO2催化加氢合成甲醇、二甲醚催化剂的研究进展和研究特点,并从催化剂的制备方法、沉淀剂的选择、焙烧时间、催化剂载体、助剂等方面进行了系统综述。  相似文献   

7.
A kinetic experiment of dimethyl carbonate (DMC) synthesis by urea methanol over ZnO catalyst was carried out in an isothermal fixed-bed reactor. A kinetic model based on the mole fraction was proposed and the kinetic parameters were estimated from the experimental results. The model predictions were compared with the experimental data and fair agreements were found. The effects of the reaction temperature (443–473 K), space time (0–4.7 h mol−1 kg cat ) and urea mass percent (5–9%) in feed on DMC mole fraction were investigated. It was found that the reactions are mainly influenced by the reaction temperature and space time rather than urea mass percent in feed. The experimental and simulated results indicated that the reaction from MC to DMC was the rate-controlling step in the DMC synthesis process from urea and methanol. It is important to remove the DMC and byproduct ammonia to achieve a high selectivity of DMC. This implies that reactive distillation might be used in the DMC synthesis on an industrial scale to achieve a higher selectivity of DMC.  相似文献   

8.
This study focused on the investigation of Nordstrandite as a catalyst for dehydration of methanol to dimethyl ether synthesis. The structure phase of Nordstrandite has been changed to boehmite and γ-Al2O3 in sequence via calcinations at various temperatures. Moreover, the properties of the samples have been varied significantly with heat treatment. The number of acid sites of Nordstrandite was much higher than the other aluminas. However, the catalytic activity of Nordstrandite was comparable to the other catalysts with fewer amounts of acid sites. This means that structure phase is one of the most important factors for catalytic performance in this reaction.  相似文献   

9.
史立杰  李晨佳  常俊石 《化工进展》2014,33(8):2066-2071
采用溶胶-凝胶法制备了用于甲醇气相脱水制二甲醚的新型催化剂全氟磺酸树脂/二氧化硅,应用X射线衍射、红外光谱、热重-差示扫描量热、低温氮物理吸附和氨程序升温脱附法对所得催化剂进行了表征。考察了反应温度、甲醇液空速、全氟磺酸树脂含量对甲醇气相催化脱水制二甲醚反应性能和催化剂稳定性的影响。结果表明,催化剂比表面积达820m2/g,在全氟磺酸树脂负载量10.0%、甲醇液空速1h?1、反应温度184℃时,甲醇转化率92.0%,二甲醚选择性99.9%,经350h实验测试,活性和稳定性没有明显变化。  相似文献   

10.
A thermodynamic method intended for choosing the most efficient flowsheet in developing new technologies of processing the natural gas is proposed. The method was tested for the process of synthesizing methanol and used in designing a new process, dimethyl ether synthesis.  相似文献   

11.
采用完全液相法制备AlOOH催化剂并进行了浆态床反应器中甲醇脱水制备二甲醚的反应动力学和DFT的研究。在3种甲醇脱水制备二甲醚的反应机理中,以表面反应即两个同时吸附的甲醇反应生成二甲醚作为速控步骤,所建立动力学模型的计算值和实验值吻合较好。采用DFT计算了液体石蜡环境中AlOOH(100)面的脱水反应,其反应过程和活化能结果与动力学模型结果基本一致,进一步表明采用该模型可以合理描述完全液相法制备的AlOOH催化剂表面甲醇脱水反应过程。  相似文献   

12.
围绕碳酸二甲酯的高效、绿色、安全、节能合成目标,构建了联合生产碳酸二甲酯、甲缩醛和二甲醚反应体系及节能工艺。借助Aspen Plus软件对独立反应及复杂体系进行了热力学分析。由结果可知,升高反应压力或降低温度可明显提高碳酸二甲酯的平衡组成;与甲缩醛和二甲醚合成工艺相耦合后,可大幅提升甲醇平衡转化率,由0.5%~5.9%提高到91.7%~96.3%。根据热力学计算结果和动力学因素,提出顺序生产碳酸二甲酯、甲缩醛和二甲醚的串联催化反应器工艺。甲缩醛和二甲醚的分离采用简单精馏方式,碳酸二甲酯和水共沸物的分离采用变压精馏,3种产品的质量浓度均可达到99%以上。可有效解决单独生产碳酸二甲酯和甲缩醛生产中原料循环量大、能耗高和易爆炸等缺陷。  相似文献   

13.
Chemical equilibrium in dimethyl ether synthesis from synthesis gas was studied thermodynamically over wide ranges of gas compositions and process parameters.  相似文献   

14.
薛晓军  贾广信  何俊辉  李婷 《化工进展》2014,33(5):1160-1163,1251
采用Benson基团贡献法估算得到二甲醚(DME)和乙酸甲酯(MA)的标准生成焓和标准生成吉布斯自由能,在298~1000K时计算了DME与合成气制乙醇(DME羰基化反应、MA加氢反应以及二者组成的总反应)过程中的反应焓变、反应熵变、反应吉布斯自由能变和化学反应的平衡常数。在此基础上,分析了反应压力、反应温度和原料比对DME转化率的影响。在413K、1×105Pa、CO∶DME=1条件下考察了不同H2浓度情况下合成乙醇反应中两个反应的协同效应。分析结果表明,在低于493K、3MPa、n(CO)∶n(DME)=1的条件下有利于合成反应的进行,由于两反应的协同效应,使MA加氢反应的平衡转化率有大幅度提高。  相似文献   

15.
Using an integrated physicochemical approach to the study of zeolites and catalysts, scientific foundations for the targeted synthesis of catalysts based on ZSM-5 type zeolites for selective production of lower olefins from methanol and dimethyl ether have been developed. The selective synthesis of the C2= and C3= olefins takes place on medium-strength acid sites. The domination of strong acid sites increases the extent of the secondary oligomerization, aromatization, and cracking reactions and intensifies the deactivation of the catalyst. The effects of reaction conditions (feed partial pressure and temperature) on the outcomes of the process have been investigated. High-efficiency Zn-containing catalysts based on modified pentasils and promoted with magnesium and phosphorus have been developed for C2=–C4= olefin synthesis. These catalysts compare well with the industrial catalyst used in the Lurgi process.  相似文献   

16.
杨玉旺  戴清  刘敬利 《化工进展》2013,32(4):816-819
采用硝酸铝和氨水中和方法得到拟薄水铝石为原料,制备了甲醇制二甲醚催化剂。考察拟薄水铝石制备过程中的中和pH值、中和温度以及催化剂制备过程中的煅烧温度对甲醇气相脱水制二甲醚性能的影响。结果表明,当中和pH值在8.0±0.2、中和温度为50~60 ℃以及煅烧温度在550~600 ℃时得到的甲醇制二甲醚催化剂活性最高。通过在催化剂上添加SiO2、SO42?、PO43?等对甲醇脱水催化剂进行改性表明,改性后甲醇脱水催化剂活性有明显的提高。  相似文献   

17.
甲醇和甲醛催化合成聚甲氧基二甲醚   总被引:7,自引:5,他引:7       下载免费PDF全文
聚甲氧基二甲醚作为柴油添加剂,可以提高柴油的十六烷值(CN),提高燃油的利用率,作为甲醇大宗下游产品具有广阔的应用前景。在固定床管式反应器中,以改性大孔阳离子交换树脂为催化剂,在温度40~100℃、液相空速1.32~16.37 h-1、甲醛/甲醇摩尔比1~4和反应压力0.1~3.0 MPa下,以单因素实验和正交实验相结合的方式,系统地研究了甲醛与甲醇缩醛化工艺条件,获得了较佳的工艺条件,在温度70℃、甲醛/甲醇摩尔比3:1、液相空速1.32 h-1、反应压力2.0 MPa的条件下,甲醇的转化率为69.72%,DMM3-8选择性为62.08%。  相似文献   

18.
19.
研究了甲醇在ZSM-5沸石分子筛上催化脱水制二甲醚反应条件的影响。并在等温积分反应器中进行了本征动力学测试,对动力学模型进行筛选和参数估值,获得反应速率方程。  相似文献   

20.
合成气一步法制二甲醚工艺及催化剂研究进展   总被引:17,自引:0,他引:17  
王和平 《工业催化》2003,11(5):34-38
二甲醚在车用燃料和民用燃料方面具有良好发展前景。合成气一步法制二甲醚工艺分气相法和浆态床法。综述了合成气一步法制取二甲醚的工艺和催化剂的研究进展以及工业化前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号