首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Long- and medium-grain rice were dried in a commercial multi-stage concurrent-flow dryer. Drying air temperatures varied fran 82°C to 177°C. Over six points of moisture were removed in one dryer pass without affecting the rice head-yield. Energy consumption of the dryers was half that of conventional rice dryers. Simulation played a major role in the design of the mUlti-stage concurrent-flow rice dryers.  相似文献   

2.
The diiffusion model describing internal diiffusion of moisture within a grain kernel during drying and tempering stages was incorporated in the cross-flow drying model to simulate the recirculating circular grain dryer with drying and tempering stages. Experiments were conducted on an experimental prototype recirculating circular grain dryer for wheat and rough rice drying. The simulated grain temperature and moisture content were compared with the experimental data of drying wheat and rough rice, the maximum deviation of the outlet grain temperature was 5°C and the maximum deviation ofthe final grain moisture content was 0.3% w.b. The simulating program for recirculating circular grain dryer was used for analyzing the effects of structure parameters and hot air parameters on the dryer performance. Recommendations for design of the recirculating circular grain dryers are drawn from the experiments and simulation.  相似文献   

3.
Germination and moisture content loss data were collected of maize with a moisture content ranging from 15 to 32% (w.b.), an air temperature from 40 to 75°C, and an exposure time from 0.5 to 180 minutes.

A germination-retention model was developed based on the normally distributed death-rate theory (NDD). The NDD model was combined with a concurrent-flow (CCF) dryer model, and tested against viability data of maize dried in a commercial two-stage CCF dryer. Acceptable agreement between the predicted and experimental viabilities was obtained.

The effect of the CCF dryer design, and of several operating parameters, on the loss of maize-seed viability was analyzed. Simulation with the NDD-CCF dryer model shows that high quality seed can be produced by drying at air temperatures well above 100°C.  相似文献   

4.
In this work we suggest the dynamic modeling of a spray dryer considered as a series of well-stirred dryers. That is, a series of dryers in which the output variables are equal to the state variables. The state equations were obtained from the heat and water mass balances in product and air. Additionally, heat and water mass balances in interface jointly with water equilibrium relation between product and air were considered. A pilot spray dryer was modeled assuming one, two, five and 20 well stirred steps. Low-fat milk with 10-20% of solids was dried at different inlet air temperatures (120-160°C), air flow rate of 0.19 kg dry air s-1 and different feed rates (1.4 - 4.2 × 10-4 kg dry solids s-1). Stationary result showed that the model predicts the experimental air outlet temperature, at different inlet conditions with a maximum deviation of 6°C. The dynamic simulation reproduce the experimental one with moderate accuracy. Experimental dynamic showed that the pilot plant spray dryer has a well-stirred process behavior. The model represents a method for estimate outlet product moisture as function of the outlet air temperature. This has application for automatic control because there is not an easy way to measure on-line measure the outlet product moisture content.  相似文献   

5.
The concept of the product moisture locus was tested in this work using a pilot-scale modified Niro spray dryer (diameter 0.8 m, height 2 m), where the residence time of the particles inside this spray dryer is lower compared with larger industrial spray dryers. The moisture contents of skim milk powder produced from spray drying skim milk (solids content 8.8% w/v) at different operating conditions, namely different swirl vane angles (0°, 25°, 30°), inlet air temperatures (170°C, 200°C, 230°C) and process fluid flowrates (1.4 kg h-1, 1.6 kg h-1, 1.8 kg h-1), were compared with the predicted equilibrium moisture contents. In addition, the residence time of the particles was also increased in the spray dryer by decreasing the inlet air mass flowrate from 0.016 to 0.013 kg s-1. The outlet moisture contents of the skim milk powder for all the 23 runs carried out in this work were within 0.4% of the equilibrium values. Thus, the skim milk powder particles were in close equilibrium with the gas inside the drying chamber. These equilibrium limitations are confirmed by other literature data (Boonyai, P. Comparative Evaluation of Soymilk Drying in a Spray Dryer and Spouted Bed of Inert Particles. M.Sc. Thesis. Asian Institute of Technology: Bangkok, Thailand, 2000; 90 pp; Harvie, D.J.E.; Langrish, T.A.G.; Fletcher, D.F. A computational fluid dynamics study of a tall-form spray dryer. Trans IChemE 2002, in press). The use of this finding to predict spray dryer performance is demonstrated by mass and energy balance calculations.  相似文献   

6.
The objective of the present work is to find the possibility of reducing the high initial moisture content of wet paddy using a small-scale, low-cost pneumatic conveying dryer that can be provided for each farming household. The dryer without a cyclone equipped at the exit of the dryer is studied and the data obtained from this system is compared with those obtained previously from the dryer with a cyclone. Parametric effects of the following variables are examined: velocity of drying air from 20 to 30 m/s, feed rate of rough rice from 150 to 350 kg/h, and drying air temperature from 35 to 70°C. From the experimental results it is found that the drying process with and without a cyclone are able to lead to very rapid drying without any grain quality problems such as cracks in the rice kernel. For the same experimental conditions, the cyclone-equipped dryer gives around 1% higher decrease of moisture content, 2°C higher average surface temperature of paddy, 3-4% higher average percentage of head rice yield, and 2 kg/h higher average evaporation rate. However, the energy consumption per evaporated mass of water is 20-30% lower than the non-cyclone-equipped dryer.  相似文献   

7.
The three most commonly occurring grains --maize, rice and wheat --are compared for single kernel and deep bed drying rates. The grains are dried in a concurrent-flow (CCF) dryer; high grain temperatures are avoided to prevent deterioration of seed viability.

Wheat dries the fastest of the three grains as an individual kernel as well as in the CCF grain dryer, maize the slowest; the throughput with wheat is 23% larger than with maize, and 15% larger than with rice.  相似文献   

8.
ABSTRACT

The three most commonly occurring grains --maize, rice and wheat --are compared for single kernel and deep bed drying rates. The grains are dried in a concurrent-flow (CCF) dryer; high grain temperatures are avoided to prevent deterioration of seed viability.

Wheat dries the fastest of the three grains as an individual kernel as well as in the CCF grain dryer, maize the slowest; the throughput with wheat is 23% larger than with maize, and 15% larger than with rice.  相似文献   

9.
An unsteady - state model of concurrent-flow maize drying was developed. It consists of a set of four partial differential equations (PDE) which are solved by finite differences. The PDE model was verified by comparing it to the steady-state concurrent-flow dryer simulation. The model was used for the development of a process model which in turn is to be employed for the design of an automatic control system of a two-stage concurrent-flow dryer.  相似文献   

10.
The performance and operating characteristics of a low temperature re-circulating cabinet dryer using a dehumidifier loop were studied using alfalfa. Chopped alfalfa, initially at 70% moisture content, was dried to 10% moisture content in the dryer. Two dryer setups were used. The dryers in each case had a partitioned cabinet with trays of material on one side and a stack of one or two small household dehumidifiers on the other side. Air was re-circulated through the material from bottom to the top and back through the dehumidifiers. Two drying configurations were tested. In one, the material was left on the trays until drying was complete (batch or fixed tray drying). In the other configuration, the trays were moved from top to bottom, introducing a new tray at the top while removing an old tray from bottom. Drying air temperature ranged from 25 to 45°C. The average air velocity through the material was 0.38 m/s. Alfalfa chops dried in 5 h in the fixed tray drying and in 4 h in the moving tray drying. The specific moisture extraction rate ranged from 0.35 to 1.02 kg/kWh for batch drying and stayed at an average value of 0.50 kg/kWh for continuous/moving tray drying.  相似文献   

11.
Using available correlations for heat transfer, a comparative analysis of drying rates in CO2 and in air was performed for several basic types of dryers. Higher heat transfer rates were found for dryers with active hydrodynamics, which translates into shorter drying time for materials dried in the first drying period. These results were validated by experiments on drying wheat kernels fluidized by air and by CO2. Shorter drying times by about 20% were confirmed for CO2, which offers energy savings of about 3% of the heat input to the dryer. Additional energy savings of 4% of the heat load can be expected for drying at temperatures below 100°C because of the lower wet-bulb temperature for CO2 than that for air. The potential for CO2 abatement was evaluated based on a case study for drying of distillers' spent grain.  相似文献   

12.
This article studies the possibility of reducing the high initial moisture content of wet rough rice using a small-scale low-cost pneumatic conveying dryer as a first stage dryer. The parameters investigated are final moisture content, surface temperature of rough rice, head rice yield, drying rate, power consumption per unit mass of evaporated water, and physical characteristics of rice. Parametric effects of the following variables are examined: velocity of drying air from 20 to 30 m/s, feed rate of rough rice from 150 to 350 kg/h, initial moisture content from 22 to 26% (wet basis), and drying air temperature from 35 to 70°C. From the experimental results, it is found that this drying method can be used for fresh rough rice with an initial moisture content of over 24% (wet basis). The drying process is able to lead to very rapid drying without any grain quality problems such as cracks in the rice kernel. The moisture content can be reduced to approximately 18% (wet basis) or about 5-6% of the initial moisture content within 3-4 s. The optimal drying air temperature is in the range of 50 to 60°C. A comparison of pneumatic conveying drying data obtained from the present study with fluidized bed drying data reported in the open literature is also discussed.  相似文献   

13.
ABSTRACT

Two rotary dryers were replaced by one three-stage concurrent flow(CCF) dryer in a commercial rice parboiling plant. Utilization of the CCF dryer has resulted in a 34 percent savings in fuel energy and a significantly higher quality of the final product. Additional advantages include space, power and labor savings.  相似文献   

14.
An unsteady - state model of concurrent-flow maize drying was developed. It consists of a set of four partial differential equations (PDE) which are solved by finite differences. The PDE model was verified by comparing it to the steady-state concurrent-flow dryer simulation. The model was used for the development of a process model which in turn is to be employed for the design of an automatic control system of a two-stage concurrent-flow dryer.  相似文献   

15.
Two rotary dryers were replaced by one three-stage concurrent flow(CCF) dryer in a commercial rice parboiling plant. Utilization of the CCF dryer has resulted in a 34 percent savings in fuel energy and a significantly higher quality of the final product. Additional advantages include space, power and labor savings.  相似文献   

16.
An industrial-scale prototype of spouted bed dryer with a capacity of around 3500 kg/h was constructed and tested. The prototype is shown to have a desirable feature of a spouted bed as well as the capability of continuous drying and offering consistent results throughout the testing period. Experimental results show that the prototype performs well in reducing the moisture content of the paddy and yields high product quality in terms of the milling quality. The high temperatures up to 130-160°C were applied to dry paddy from various initial moisture contents to the range of 14-25%, dry basis without significant change in quality. Thermal energy consumption, in the range of 3.1-3.8 MJ/kg water, is comparable with other commercial dryers.  相似文献   

17.
The objectives of this work are to analyze the drying performance of conical-cylindrical spouted bed (CSB) dryers for three different grains (rice, corn and wheat), and to compare the drying efficiency of CSB dryers with that of spout-fluid bed (SFB) dryers. A PC-program was developed for: (I) -optimization of the CSB dryer dimensions; (2) -simulation of drying grains in the optimized CSB dryer (including start-up period); and, (3) -analysis of the drying performance in a similar SFB dryer.

The liquid diffusion model is used to describe the falling rate drying period. Semi-empirical correlations available in the literature as well as information obtained in the authors' laboratory for spouted and spout-fluidized beds of grains are used to describe the aerodynamic parameters.

The results are presented in terms of the size of the dryer, energy consumption, air handling requirement, drying characteristics etc for different drying conditions. The drying effeciency in a CSB is compared with that in a similar SFB for different grain feed rates and drying temperatures.  相似文献   

18.
In earlier studies we have shown by simulation and experimental studies that the proposed chemical heat pump (CHP) unit can be used to recover waste heat from dryers and reuse it by storing and releasing heat with upgrading the temperature or by dehumidification. However, the final thermal energy production efficiency of the CHP for drying was found to be low. In this paper we present experimental results to demonstrate the potential for improved heat-recovery/storage and the heat-release/production of hot dry air for batch drying applications using the heat enhancement mode of the CHP. A new laboratory scale experimental CHP dryer system was built utilizing the calcium oxide/calcium hydroxide hydration/dehydration reversible reaction. The aim of this study is to improve the efficiencies of the heat recovery from heat source in the heat-storage step and the hot dry air production in the heat-release step of the CHP for heating up the air to around 100°C. The results of this experimental study utilizing a new reactor design showed that the shallow reactor/heat exchanger could accomplish 94% chemical heat storage and produce 100°C air at better than 75% efficiency for the reaction heat by controlling the preheating condition. The reaction conversion reached 90% in these experiments. The proposed CHP-assisted convective dryer system is found to be energy-efficient over a wide temperature range of industrial interest.  相似文献   

19.
A cross-flow fluidized bed paddy dryer with a capacily of 200 kgh was designed, fabricated and tested. Experimental results showed that final moisture content of paddy should not be lower than 23 % dry-basis if quality is to be maintained. Drying air temperature was keot constant at 115°C according to the recommendation of previous work. Results obtained from the mathematical model developed in this study indicatedthat optimum operating parameters should be as follows : air speed of 2.3 m/s, bed thickness of 10 cm and fraction of air recycled of 80 %. At this condition, energy consumption was close to the minimum while drying capacity was near the maximum. A prototype fluidized bed dryer with a capacity of 1 t/h was designed, fabricated and installed with the collaboration of a private company. The unit has been used for almost the whole past harvesting season in 1994 at a paddy merchant sile with preference compared to conventional column continuous dryers. More than 300 tons of paddy were dried without any problems.  相似文献   

20.
The objectives of this work are to analyze the drying performance of conical-cylindrical spouted bed (CSB) dryers for three different grains (rice, corn and wheat), and to compare the drying efficiency of CSB dryers with that of spout-fluid bed (SFB) dryers. A PC-program was developed for: (I) -optimization of the CSB dryer dimensions; (2) -simulation of drying grains in the optimized CSB dryer (including start-up period); and, (3) -analysis of the drying performance in a similar SFB dryer.

The liquid diffusion model is used to describe the falling rate drying period. Semi-empirical correlations available in the literature as well as information obtained in the authors' laboratory for spouted and spout-fluidized beds of grains are used to describe the aerodynamic parameters.

The results are presented in terms of the size of the dryer, energy consumption, air handling requirement, drying characteristics etc for different drying conditions. The drying effeciency in a CSB is compared with that in a similar SFB for different grain feed rates and drying temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号