首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymers, as widely used non‐viral gene carriers, suffer from high cytotoxicity and relatively low transfection efficiency. Such crucial drawbacks of polymers could be solved by incorporating short and bioactive peptides. The resulting synthetic polymer–peptide conjugates can not only maintain their own special characteristics, but also gain novel characteristics far beyond those of their parent polymer and peptide components to overcome barriers to gene delivery. There are various chemoselective reactions applied in the synthesis of polymer–peptide conjugates, such as Heck, Sonogashira and Suzuki coupling, Diels–Alder cycloaddition, click chemistry, Staudinger ligation, reductive alkylation and oxime/hydrazone chemistry. Among them, thiol–ene click reactions, including thiol–ene radical and thiol Michael addition reactions, are common methods for preparing peptide–polymer conjugates. In this review, we focus on thiol Michael addition reactions, elaborate on their mechanisms and highlight their applications in the synthesis of polymer–peptide conjugates for gene delivery. © 2017 Society of Chemical Industry  相似文献   

2.
Efficient delivery of small interfering RNA (siRNA) into cells is the basis of target‐gene‐specific silencing and, ultimately, gene therapy. However, current transfection reagents are relatively inefficient, and very few studies provide the sort of systematic understanding based on structure–activity relationships that would provide rationales for their improvement. This work established peptide dendrimers (administered with cationic lipids) as siRNA transfection reagents and recorded structure–activity relationships that highlighted the importance of positive charge distribution in the two outer layers and a hydrophobic core as key features for efficient performance. These dendrimer‐based transfection reagents work as well as highly optimised commercial reagents, yet show less toxicity and fewer off‐target effects. Additionally, the degrees of freedom in the synthetic procedure will allow the placing of decisive recognition features to enhance and fine‐tune transfection and cell specificity in the future.  相似文献   

3.
Polycationic dendrimers are interesting nonviral vectors for in vitro DNA delivery. We describe a simple approach to the synthesis of dendritic polyamines with different molecular weights and adjustable flexibility (degrees of branching; DB). Both parameters influence the transfection efficiency and the cell toxicity of the polymer. Functionalization of hyperbranched polyethylenimine (PEI) by a two-step procedure generated fully branched pseudodendrimers (analogues of polypropylenimine (PPI) and polyamidoamine (PAMAM) dendrimers). The DNA transfection efficiencies observed for these polymers depended on the cell line investigated. The highest efficiencies were observed for polymers whose unfunctionalized PEI cores had molecular weights in the range M(w)=6000-25 000 g mol(-1). The cytotoxicity of the dendrimers generally rises with increasing core size. The data collected for NIH/3T3 and COS-7 cells indicate a maximum transfection efficiency at around 60 % branching for the PPI analogues, and at a PEI-core molecular weight of M(w)=25 000 g mol(-1). PAMAM functionalization of PEI (M(w)=5000 and 21 000 g mol(-1)) leads to polymers with little or no cytotoxity in the cell lines investigated.  相似文献   

4.
Star polymers are hyperbranched polymers with fascinating properties and exhibiting self‐assembly behaviour that have recently attracted a lot of interest in the field of gene delivery. This perspective aims to summarize the latest studies of star polymers as gene delivery vectors. Specifically, the aim is to identify and discuss the main synthetic methodologies that are used to fabricate star polymers and which structural characteristics affect their ability to be used as gene delivery agents. © 2014 Society of Chemical Industry  相似文献   

5.
The impact of a peptide that contains a nuclear localisation sequence (NLS) on intracellular DNA trafficking was studied. We used the adenoviral core peptide mu and an SV40 NLS peptide to condense plasmid DNA (pDNA) prior to formulation with 3beta-[N-(N', N'-dimethylaminoethane)carbamoyl]cholesterol/dioleoyl-L-alpha-phosphatidyl ethanolamine (DC-Chol/DOPE) liposomes to give LMD and LND vectors, respectively. Fluorescent-labelled lipid and peptides plus dye-labelled pDNA components were used to investigate gene delivery in dividing and S-phase growth-arrested cells. Confocal microscopic analyses reveal little difference in intracellular trafficking events. Strikingly, mu peptide associates with nuclei and nucleoli of cells within less than 15 mins incubation of LMD with cells, which suggests that mu peptide has an NLS function. These NLS properties were confirmed by cloning of a mu-beta-galactosidase fusion protein that localises in the nuclei of cells after cytosolic translation. In dividing cells both LMD and LND deliver pDNA(Cy3) to nuclei within 30-45 min incubation with cells. By contrast, pDNA is detected only in the cytoplasm in growth-arrested cells over the period of time investigated, and not in the nuclei. LD systems prepared from DC-Chol/DOPE cationic liposomes and pDNA(Cy3) behave similarly to LMD systems, which suggests that mu peptide is unable to influence trafficking events in this current LMD formulation, in spite of its strong NLS capacity. We further describe the effect of polyethyleneglycol (PEG) on cellular uptake. "Stealth" systems obtained by post-coating LMD particles with fluorescent-labelled PEG molecules (0.5, 5 and 10 mol % fluorescein-PEG(5000)-N-hydroxysuccinimide) were prepared and shown to be internalised rapidly (mins) by cells, without detectable transgene expression. This result indicates that PEG blocks intracellular trafficking of pDNA.  相似文献   

6.
Core-shell type stars synthesized via atom transfer radical polymerization were used for the delivery of nucleic acids. The interior of the stars consisted of hyperbranched poly(arylene oxindole), while the arms were composed of poly(N,N-dimethylaminoethyl methacrylate). The length of the star arms varied in degree of polymerization (DP) from 14 to 98. The hydrodynamic radius of the structures measured in water indicated the presence of small aggregates, while isolated stars ranging in size from 14 to 29 nm were seen in organic solvent. The phase transition temperatures of the stars in water, measured in basic conditions, were shifted to lower values with increasing DP of the arms. Stable polyplexes of stars with plasmid DNA were formed. Their size varied from 300 nm to 400 nm, depending upon the DP of arms. The zeta potential of the polyplexes was positive, which facilitated their cellular uptake. The DP of the arms influenced the transfection efficiency of HT-1080 cells, demonstrating that stars are promising candidates for synthetic gene vectors.  相似文献   

7.
RNA interference holds great potential for cancer therapeutics and its success is highly dependent on an effective delivery system. As most preclinical drug screening in vitro was conducted in flat monolayer cell cultures, development of more physiologically relevant models is needed to enhance testing reliability and effectiveness. Here, the aim was to develop 3D cell spheroids and evaluate the efficiency of NP1, a novel cell penetrating peptide, CPP (STR-H16R8), developed by our group to assist siRNA delivery. NP1 elicited significant cellular uptake of siRNA and promoted great siRNA knockdown efficiency of Bcl-2 and VEGF mRNA in 3D spheroids (53% and 51%, respectively), induced marked apoptosis after silencing HIF mRNA, and 3D spheroids displayed apoptosis resistance compared to 2D cells. Taken together, 3D spheroids provide an improved model for testing siRNA delivery and NP1 has proved to be a powerful in vitro transfection reagent.  相似文献   

8.
This mini‐review focuses on recent efforts to prepare single component element‐block materials based on siloxane‐based cage frameworks, a promising approach to control the sequence of organic and inorganic segments in organic–inorganic hybrids at the molecular level. Polyhedral octasilsesquioxanes, denoted (RSiO1.5)8 or labeled T8 cages, and octadimethylsiloxy‐Q8 cages, denoted (RSiMe2OSiO1.5)8, are used here as siloxane‐based cage frameworks. Thermoplastic optically transparent silsesquioxane materials derived from a single cage compound can be obtained with dumbbell‐ and star‐shaped cage structures, allowing precise design of their structures for tuning properties. The siloxane‐based cage core dendrimers are ideal candidates for single component element‐block materials which possess three‐dimensional, well‐defined molecular level structures. Their rigid and cubic inorganic frameworks provide unique features for siloxane‐based cage core dendrimers. These topics attract attention in both academia and industry. © 2016 Society of Chemical Industry  相似文献   

9.
Dendritic‐linear‐dendritic (DLD) hybrids are highly functional materials combining the properties of linear and dendritic polymers. Attempts to electrospin DLD polymers composed of hyperbranched dendritic blocks of 2,2‐bis(hydroxymethyl) propionic acid on a linear poly(ethylene glycol) core proved unsuccessful. Nevertheless, when these DLD hybrids were blended with an array of different biodegradable polymers as entanglement enhancers, nanofibrous nonwovens were successfully prepared by electrospinning. The pseudogeneration degree of the DLDs, the nature of the co‐electrospun polymer and the solvent systems used for the preparation of the electrospinning solutions exerted a significant effect on the diameter and morphology of the electrospun fibers. It is worth‐noting that aqueous solutions of the DLD polymers and only 1% (w/v) poly(ethylene oxide) resulted in the production of smoother and thinner nanofibers. Such dendritic nanofibrous scaffolds can be promising materials for biomedical applications due to their biocompatibility, biodegradability, multifunctionality, and advanced structural architecture. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45949.  相似文献   

10.
pH‐responsiveness is highly desirable in the stimuli‐responsive controlled release because of the distinct advantages of the fast response of pH‐triggered release and the available pH‐difference between intra‐ and extra‐cells. The present work reported a kind of novel pH‐responsive polymeric micelles, which was derived from biopolymer of 6‐O‐dodecyl‐chitosan carbamate (DCC) and evaluated as gene‐controlled release vector. The amphiphilic and amino‐rich DDC was synthesized through a protection‐graft‐deprotection method. 13C CP/MAS NMR, FTIR, and elemental analysis identified that dodecyls were chemoselectively grafting at 6‐hydroxyls of chitosan via the pH‐responsive bonds of carbamate, and the substitute degree (SD) was 14%. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) showed that DCC self‐assembled into polymeric micelles in aqueous solutions. The DCC polymeric micelles formed complexes with pDNA, which was elucidated by Gel retardation, TEM, and DLS. Transfection and cytotoxicity assays in A549 cells showed that DCC polymeric micelles were suitable for gene delivery. The improved transfection was attributed to the pH‐responsiveness and the moderate pDNA‐binding affinity, which led to easier release of pDNA intra‐cells. The synthesized DCC polymeric micelles might be a promising and safe candidate as nonviral vectors for gene delivery. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42469.  相似文献   

11.
Microbial polyhydroxyalkanoates (PHAs) have been a subject of significant research interest in the past few decades. The recent development of novel functionalized PHAs has opened up new possibilities to combine the good biocompatibility of PHA‐based drug delivery systems to, for example, improve drug loading and release properties, targeting or imaging functionalities. This mini‐review presents some recent scientific developments in the preparation of functionalized PHAs, PHA–drug and PHA–protein conjugates, multifunctional PHA nanoparticles and micelles as well as biosynthetic PHA particles for drug delivery. These developments in combination with the generally excellent biocompatibility of PHA materials are expected to further expand the interest in PHA materials for drug delivery and other therapeutic applications. © 2016 Society of Chemical Industry  相似文献   

12.
The preparation and characterization of a novel polymeric drug‐delivery system designed for bone targeting of antineoplastics is described. The system was based on biocompatible poly[N‐(2‐hydroxypropyl)methacrylamide] carrier containing hydroxybisphosphonate targeting moieties and the model radiotherapeutics 125I or 111In or the anticancer drug doxorubicin. The in vitro binding studies with hydroxyapatite as a bone model proved that the system was efficiently adsorbed on this mineral. The systems contained model drugs bound by stable (amide), hydrolytically cleavable (hydrazone) or enzymatically cleavable (Gly‐Phe‐Leu‐Gly tetrapeptide) spacers. It was proven in vitro that, in the case of cleavable spacers, the drug could be released from the polymer carrier at a rate depending on the pH or enzymatic stimulus. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci: 3192–3201, 2006  相似文献   

13.
Amine‐terminated hyperbranched polymer (HBP‐NH2), as an inhibitor in water‐based drilling fluid, is prepared by the polycondensation of diamine AB2 monomers. The primary amine and secondary amide structures are confirmed by Fourier transform infrared spectroscopy and nuclear magnetic resonance hydrogen spectroscopy. Through time of flight mass spectrometry, the molecular weight of HBP‐NH2 is mainly distributed in the range of 200–1400. Also, the quasi‐spherical shape and the high temperature resistance (200 °C) performance of HBP‐NH2 are, respectively, certified through the environmental scanning electron microscope and the thermogravimetric analysis. In the inhibition performance test, the linear expansion rate of sodium bentonite in 3 wt % HBP‐NH2 aqueous solution is only 11.42%, which is lower than other inhibitors (KCl, FA‐367, and HPAM). Zeta potential analysis shows that HBP‐NH2 has a strong ability to inhibit the hydration and dispersion of sodium bentonite by protonated primary amine groups. Compared with the base slurry, the absolute value of zeta potential is reduced by 25.5 mV in the slurry containing 3 wt % HBP‐NH2 at 180 rpm. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45466.  相似文献   

14.
The non‐isothermal degradation kinetics of the cured polymer samples of N,N′‐bismaleimide‐4,4′‐diphenylmethane/barbituric acid [BMI/BTA = 2/1 (mol/mol)] based polymers in the presence of hydroquinone (HQ) and native BMI/BTA was investigated by the thermogravimetric (TG) technique. By adding 5 wt % HQ into the BMI/BTA polymerization, the activation energy (Ea) of the thermal degradation process increased significantly in comparison with native BMI/BTA. Thus, the thermal stability of the cured polymer sample in the presence of HQ was greatly improved. The thermal degradation process exhibits three distinct stages. The key kinetic parameters associated with these stages were attained via the model‐fitting method. For the sample of native BMI/BTA, the thermal degradation process was primarily controlled by nucleation, followed by the multi‐decay law in the first stage. In contrast, the reaction order model adequately described the thermal degradation kinetics in the second stage. As to the last stage, the complex processes were described satisfactorily by the best‐fitted reaction model. For the sample of BMI/BTA/5 wt % HQ, the degradation process was controlled by the nucleation mechanism, followed by the multi‐molecular decay law in the first stage. In contrast, the second stage was controlled by the mixed mode of the competitive reaction order mechanism and 3‐D diffusion mechanism. In the third stage, the complex processes were also adequately described by the best‐fitted reaction model. All the experimental results illustrated that incorporation of 5 wt % HQ into the BMI/BTA based polymer resulted in the best thermal stability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1923–1930, 2013  相似文献   

15.
A hyperbranched polyol (HBP) was synthesized with poly(ethylene glycol) (PEG) as the core molecule and 2,2‐bis(hydroxymethyl) propionic acid as the chain extender. Then, a series of hyperbranched polyurethane phase‐change materials (HP‐PCMs) with different crosslinking densities was synthesized with isophorone diisocyanate and HBP as a molecular skeleton and PEG 6000 as a phase‐change ingredient. 1H‐NMR, gel permeation chromatography, and Fourier transform infrared spectroscopy confirmed the successful synthesis of the HBP and HP‐PCMs. The polarization optical microscopy and wide‐angle X‐ray diffraction results show that the HP‐PCM exhibited good crystallization properties, but the crystallinity was lower than that of PEG 6000. The analysis results from differential scanning calorimetry indicated that the HP‐PCMs were typical solid–solid phase‐change materials with suitable phase‐transition temperatures. In addition, HP‐PCM‐3, with an appropriate degree of hyperbranched structure, possessed the highest thermal transition enthalpy of 123.5 J/g. Moreover, thermal cycling testing and thermogravimetric analysis showed that the HP‐PCMs exhibited good thermal reliability and stability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45014.  相似文献   

16.
Polymercaptanized soybean oil (PMSO), the product of a thiol‐ene reaction between soybean oil and hydrogen sulfide, is a material of interest as a lubricant additive and polymer precursor. We investigated with gel permeation chromatography, nuclear magnetic resonance (one‐dimensional and two‐dimensional), gas chromatography–mass spectrometry, and viscometry the changes that occur with PMSO upon heating or ultraviolet irradiation. The observed changes were due to a further thiol‐ene reaction between the thiol groups and the residual unsaturation. The formation of oligomers was a result of new sulfide bridges. Additionally, tetrahydrothiophene moieties were detected. An almost linear increase of the average molecular weight (MW) and the polydispersity index (PDI) was observed upon heat treatment [number‐average MW ( ) = 1180 Da, PDI = 1.32 for PMSO, = 1720 Da, PDI = 2.17 for PMSO that was heated for 1000 h at 130 °C]. PDI correlated best with the z‐average MW. The was the best predictor of the viscosity. For samples with close , the higher PDI corresponded to a higher viscosity index. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46150.  相似文献   

17.
Zein is the major storage protein from corn with strong hydrophobicity and unique solubility and has been considered as a versatile food biopolymer. Due to the special tertiary structures, zein can self‐assemble to form micro‐ and nano‐particles through liquid–liquid dispersion or solvent evaporation approaches. Zein‐based delivery systems have been particularly investigated for hydrophobic drugs and nutrients. Recently, increasing attention has been drawn to fabricate zein‐based advanced drug delivery systems for various applications. In this review, the molecular models of zein tertiary structure and possible mechanisms involved in zein self‐assembly micro‐ and nano‐particles are briefly introduced. Then, a state‐of‐the‐art introduction and discussion are given in terms of preparation, characterization, and application of zein‐based particles as delivery systems in the fields of food science, pharmaceutics, and biomedicine. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40696.  相似文献   

18.
(2′S)‐2′‐Deoxy‐2′‐C‐methyluridine and (2′R)‐2′‐deoxy‐2′‐C‐methyluridine were incorporated in the 3′‐overhang region of the sense and antisense strands and in positions 2 and 5 of the seed region of siRNA duplexes directed against Renilla luciferase, whereas (2′S)‐2′‐deoxy‐2′‐C‐methylcytidine was incorporated in the 6‐position of the seed region of the same constructions. A dual luciferase reporter assay in transfected HeLa cells was used as a model system to measure the IC50 values of 24 different modified duplexes. The best results were obtained by the substitution of one thymidine unit in the antisense 3′‐overhang region by (2′S)‐ or (2′R)‐2′‐deoxy‐2′‐C‐methyluridine, reducing IC50 to half of the value observed for the natural control. The selectivity of the modified siRNA was measured, it being found that modifications in positions 5 and 6 of the seed region had a positive effect on the ON/OFF activity.  相似文献   

19.
朱韵  张东岳 《化工进展》2018,37(Z1):162-167
现有的基因载体由于较高的细胞毒性和单一的功能性在生物医药领域的应用受到限制,糖原是一种动物淀粉,是由葡萄糖结合而成的支链多糖,具有良好的生物相容性和生物可降解性,以糖原为骨架,利用糖原上的羟基引入原子转移自由基聚会(ATRP)引发点,制备得到以聚甲基丙烯酸N,N-二甲氨基乙酯为侧链的阳离子基因载体Gly-co-PDs,该载体侧链上的氨基可进行后续修饰,进一步被金粒子功能化后得到Gly-co-PD-Au载体,并对该载体的基因络合能力、基因释放能力、细胞毒性和CT成像能力进行研究,研究表明:该载体与目前商业化的基因载体聚乙烯亚胺和聚甲基丙烯酸二甲氨基乙酯相比,具有更优异的基因运载能力,更低的细胞毒性和独特的CT成像功能,因此该载体可用于癌细胞基因治疗的实时可成像CT造影,在实现实时成像的基因治疗方面有潜在应用价值。  相似文献   

20.
A novel vector for gene delivery was synthesized. Here the ovalbumin (OVA) acts as a core and low‐molecular‐weight PEI600 was grafted to its surface. The finally product was characterized (1H‐NMR, UV, and TGA) and its biophysical properties such as DNA condensing, particle size, and zeta potential were determined. The agarose gel assay indicated that OVA‐PEI600 could efficiently condense plasmid DNA. Its particle size was about 150 nm and zeta potential was around +20 mV. The MTT assay showed that the cytotoxicity of OVA‐PEI600 was less than PEI25 kDa. Its transfection efficiency in SKOV‐3 and HepG2 cell lines was higher than that of PEI600 and comparable to PEI25 kDa. In vivo, luciferase activity could be tested in liver, spleen, kidney, lung, and blood serum, respectively, in mice. The core‐shell structure of OVA‐PEI600 provided a novel strategy for nonviral gene delivery. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号