首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
Traveling wave ion mobility mass spectrometry (TWIM MS) was combined with gradient tandem mass spectrometry (gMS(2)) to deconvolute and characterize superimposed ions with different charges and shapes formed by electrospray ionization (ESI) of self-assembled, hexameric metallomacrocycles composed of terpyridine-based ligands and Cd(II) ions. ESI conditions were optimized to obtain intact hexameric cation assemblies in a low charge state (2+), in order to minimize overlapping fragments of the same mass-to-charge ratio. With TWIM MS, intact hexameric ions could be separated from remaining fragments and aggregates. Collisional activation of these hexameric ions at varying collision energies (gMS(2)), followed by TWIM separation, was then performed to resolve macrocyclic from linear hexameric species. Because of the different stabilities of these architectures, gMS(2) changes their relative amounts, which can be monitored individually after subsequent ion mobility separation. On the basis of this unique strategy, hexameric cyclic and linear isomers have been successfully resolved and identified. Complementary structural information was gained by the gMS(2) fragmentation pattern of the metallosupramolecules, acquired by collisionally activated dissociation after TWIM dispersion. TWIM MS interfaced with gMS(2) should be particularly valuable for the characterization of a variety of supramolecular polymers, which often contain isomeric architectures that yield overlapping fragments and aggregates upon ESI MS analysis.  相似文献   

2.
This work presents new frontal affinity chromatography (FAC) methodologies for high-throughput screening of compound libraries, designed to increase screening rates and improve sensitivity and ruggedness in performance. A FAC column constructed around the enzyme N-acetylglucosaminyltransferase V (GnT-V) was implemented in the identification of potential enzyme inhibitors from two libraries of trisaccharides. Effluent from the FAC column was fractionated, sequentially processed via LC/MS, and referenced to a similar analysis through a control FAC column lacking the enzyme. The resulting multidimensional data sets were compared across corresponding sample and control fractions to identify binders, in a semiautomated approach. A strong binder in the protonated form at m/z 795 was identified from the first library of 81 compounds, exhibiting an estimated Kd value of 0.3 microM. Other binders yielded Kd values ranging from 0.35 to 3.35 microM. To demonstrate the improvement in performance of this FAC-LC/MS approach over the conventional online FAC/MS approach, 15 compounds from this library were blended with a second library of 1000 synthetic trisaccharides and screened against GnT-V. All ligands in the 15-compound set were identified in this larger screen, and no ligands of greater affinity than compound 1 were found. Our results show that FAC-LC/MS is a reliable method for screening large compound libraries directly and useful for large-scale ligand discovery initiatives.  相似文献   

3.
Zhang H  Hu B  Sun L  Hovden R  Wise FW  Muller DA  Robinson RD 《Nano letters》2011,11(12):5356-5361
A novel method is reported to create inorganically connected nanocrystal (NC) assemblies for both II-VI and IV-VI semiconductors by removing surfactant ligands using (NH4)2S. This surface modification process differs from ligand exchange methods in that no new surfactant ligands are introduced and the post-treated NC surfaces are nearly bare. The detailed mechanism study shows that the high reactivity between (NH4)2S and metal-surfactant ligand complexes enables the complete removal of surfactant ligands in seconds and converts the NC metal-rich shells into metal sulfides. The post-treated NCs are connected through metal-sulfide bonding and form a larger NCs film assembly, while still maintaining quantum confinement. Such "connected but confined" NC assemblies are promising new materials for electronic and optoelectronic devices.  相似文献   

4.
大跨度煤棚结构作为风敏感结构,在工程设计中应充分考虑风荷载的影响。该文以煤棚结构为研究对象,对其刚性模型进行风洞试验研究。考虑分别在0°、90°、180°和270°风向角下,煤棚两端弧面及天窗位置处风压分布情况,进一步分析煤棚表面特殊形状位置处体型系数随风向角的变化规律。研究表明:观察0°、90°、180°和270°风向角下各个测点的体型系数,发现风向角为90°时,弧面底部位置处,测点A1(B1)体型系数较大,在煤棚设计与施工中应针对该测点附近区域进行加固。对比分析各风向角下,天窗位置测点的体型系数,90°风向角下体型系数绝对值较大,认为此时风压较大,应适当对其加固。  相似文献   

5.
Polyrotaxanes (PR) are among the most studied interlocked molecules in the field of supramolecular chemistry. Cyclodextrin based polyrotaxanes (CD based PRs) are well-known to be difficult to analyze by mass spectrometry (MS). Nanoelectrospray (nanoESI) employed during mass spectrometry (MS) and tandem mass spectrometry (MS/MS) experiments turns out to be particularly useful to analyze these noncovalent assemblies. While ESI/nanoESI based spectra usually contain multicharged species which greatly complicate the interpretation, particularly for such complex mixtures analysis, the hyphenation with a high resolution analyzer such as Orbitrap could overcome this limitation. This Article reports efforts to achieve a detailed structural deciphering by nanoESI-MS and nanoESI-MS/MS of CD based PRs constituted of αCDs, unmodified or surrounded by 1 or 2 sulfation(s), which were threaded along polydisperse poly(ethylene oxide) α,ω-dipyrenyl chains. The described method is more sensitive and less sample consuming than a typical NMR experiment and in good agreement with size-exclusion chromatography (SEC) results. Moreover, as compared to MALDI-TOF MS analysis, all populations were presumably elucidated without discrimination effect. Therefore, this MS development allowed us to estimate the PR sample content with 16 to 35 ethylene oxide units, 1 to 5 αCDs threaded, and 0 to 10 sulfo groups grafted on the overall CDs. Finally, the method afforded the possibility to unambiguously attribute supramolecular architectures from 2276.0278 to 7767.8342 g·mol(-1) corresponding to poly[2]- to poly[6]rotaxanes.  相似文献   

6.
Inspired by the flexibility of the bottom‐up approach in terms of selecting molecular components and thus tailoring functionalities, a terpyridine derivative (1,2,4,5‐tetrakis(4‐(2,2′:6′,2″‐terpyridyl)phenyl)benzene) (Tetra‐tpy) is synthesized and coordinated with Co(II) ion to self‐assemble into a nanosheet Co‐sheet by a facile interface‐assisted synthesis. The bis(terpyridine)‐Co(II) complex nanosheet formed not only shows good stability, but also features the layered structure and rich electrochemical activity inherited from the embedded Co(terpyridine)2 motif. Thus, Co‐sheet can serve as a cathode material for a dual‐ion battery prototype, which exhibits a high utilization of redox‐active sites, good cycling stability, and rate capability, thus expanding the potential application of this kind of easily prepared metal‐complex nanosheets in the field of energy storage.  相似文献   

7.
It is becoming increasingly common to use gold nanoparticles (AuNPs) protected by a heterogeneous mixture of thiolate ligands, but many ligand mixtures on AuNPs cannot be properly characterized due to the inherent limitations of commonly used spectroscopic techniques. Using ion mobility-mass spectrometry (IM-MS), we have developed a strategy that allows measurement of the relative quantity of ligands on AuNP surfaces. This strategy is used for the characterization of three samples of mixed-ligand AuNPs: tiopronin:glutathione (av diameter 2.5 nm), octanethiol:decanethiol (av diameter 3.6 nm), and tiopronin:11-mercaptoundecyl(poly ethylene glycol) (av diameter 2.5 nm). For validation purposes, the results obtained for tiopronin:glutathione AuNPs were compared to parallel measurements using nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) without ion mobility separation. Relative quantitation measurements for NMR and IM-MS were in excellent agreement, with an average difference of less than 1% relative abundance. IM-MS and MS without ion mobility separation were not comparable, due to a lack of ion signals for MS. The other two mixed-ligand AuNPs provide examples of measurements that cannot be performed using NMR spectroscopy.  相似文献   

8.
High-throughput screening of combinatorial libraries has evolved from studying large diverse libraries to analyzing small, structurally similar, focused libraries. This paradigm shift has generated a need for rapid screening technologies to screen both diverse and focused libraries in a simple, efficient, and inexpensive manner. We have proactively addressed these needs by developing a high-throughput, solution-based method combining size exclusion (SEC), two-dimensional liquid chromatography (2-D LC), and mass spectrometry (MS) for determining the relative binding of drug candidates in small, focused medicinal libraries against human serum albumin (HSA). Two types of libraries were used to evaluate the performance of the system. The first consisted of five diverse ligands with a wide range of hydrophobicities and whose association constants to HSA cover 3 orders of magnitude. A beta-lactam library composed of structurally similar compounds was used to further confirm the validity of the methodology. The ability to distinguish site-specific interactions of drugs competing for individual domains of the HSA receptor is also demonstrated. Comparison of chromatographic profiles of the library components before and after incubation with the receptor using multiple reaction monitoring allowed a ranking of the ligands according to their relative binding affinities. The observed rankings correlate closely with literature values of the association constants between the respective ligands and HSA. This simple, rugged methodology can screen a wide spectrum of chemical entities from combinatorial mixtures in less than 6 min.  相似文献   

9.
Combinatorial peptide synthesis in combination with affinity selection and high-resolution ion mobility/time-of-flight mass spectrometry (IM/TOFMS) analysis has been used to investigate the binding of a series of 96 related eight-residue peptides (with the general sequence NH2-GX1X2FX3X4X5G-CO2H, where X1 = L, F, V, Y; X2 = N, F; X3 = E, V, T; X4 = V, L; X5 = V, L) to the ribonuclease S protein. A key advantage of this strategy is that the IM/ TOFMS approach allows the relative abundances of individual library components (including numerous sequence and structural isomers) to be characterized before and after screening. The relative binding interactions of different sequences are assessed by comparing IM/TOFMS data for those components that pass through the column (as well as those that bind) to data for the library prior to screening. The high-affinity sequences that are found in this study are compared with those selected from much larger combinatorial libraries. The results suggest that many expected sequences in the large libraries may be missing (e.g., due to issues such as failure of specific steps during the synthesis or differences in solubility). Comparison of the binding sequences obtained in these studies and those reported previously indicates that screening results from large libraries should be interpreted with caution.  相似文献   

10.
An electrospray ionization mass spectrometry (ESI-MS) method for quantifying protein-ligand complexes that cannot be directly detected by ESI-MS is described. The proxy protein ESI-MS method combines direct ESI-MS binding measurements with competitive protein-ligand binding. To implement the method, a proxy protein (P(proxy)), which interacts specifically with the ligand of interest with known affinity and can be detected directly by ESI-MS, is used to quantitatively monitor the extent of ligand binding to the protein of interest. A mathematical framework for establishing the association constant (K(a)) for protein-ligand binding by the proxy protein ESI-MS method, implemented with a P(proxy) containing a single ligand binding site, is given. A modified form of the proxy protein ESI-MS method, which accounts for real-time changes in ligand concentration, is also described. The reliability of these methods is demonstrated for the interactions between the 180 kDa wildtype homotrimeric tailspike protein of the bacteriophage P22 and its endorhamnosidase point mutant (D392N) with its ligands comprising two and three O-antigen repeats from Salmonella enterica serovar Typhimurium: octasaccharide ([α-Gal-(1→2)-[α-Abe-(1→3)]-α-Man-(1→4)-α-Rha](2)) and dodecasaccharide ([α-Gal-(1→2)-[α-Abe-(1→3)]-α-Man-(1→4)-α-Rha](3)). A 27 kDa single chain antibody, which binds to both ligands, served as P(proxy). The results of binding measurements performed at 10 and 25 °C are in excellent agreement with K(a) values measured previously using a fluorescence quenching assay.  相似文献   

11.
A significant challenge faced in the use of nanoscale building blocks is developing parallel methods for interconnecting and patterning assemblies of the individual components. Molecular or polymeric scaffolds hold promise as a means of preparing closely spaced, specifically arranged nanoscale assemblies. Here we show how a biopolymer, DNA, can be used as a scaffold for the assembly of extended, close-packed, ligand-stabilized metal nanoparticle structures, including several desirable architectures (such as lines, ribbons, and branches). Electrostatic binding of ligand-stabilized nanoparticles to the DNA backbone results in extended linear chain-like structures, ribbon-like structures composed of parallel nanoparticle chains, and branched structures. High-resolution transmission electron microscopy shows that the particles are evenly spaced, separated only by the 15 A imposed by the intervening ligand shell. These studies demonstrate that biomolecular nanolithography (the arrangement of nanoscale building blocks on biomolecular scaffolds) is a viable approach to interconnecting individual devices into extended, closely spaced assemblies.  相似文献   

12.
花状ZnO超细结构的水热自组装   总被引:1,自引:0,他引:1  
通过简单的水热合成路线,合成出由ZnO纳米棒束组装的花状结构.其组成结构单元ZnO纳米棒沿[001]晶向生长,呈很好的单晶结构.大部分纳米棒直径约为500nm,长约6.0μm.研究结果表明,在无水乙二胺存在的条件下,氨水(28%, v/v)在ZnO花状结构的形成过程中起到了至关重要的作用.调节氨水的含量,组成结构单元ZnO纳米棒可以组装成不同的花状结构.当加入氨水的量使得溶液的pH值达到10时,即可得到由ZnO纳米棒束组装成的花状结构,并简单讨论了这种花状结构的形状结构的形成机理.   相似文献   

13.
This paper presents a novel direct digital frequency synthesis (DDFS) ROM compression technique based on two properties of a sine function: (a) piecewise linear technique to approximate a sinusoid, and (b) variation in the slope of the sinusoid at different phase angles. In the proposed DDFS architecture the ROM stores a few of the sinusoidal values, and the interpolation points between the successive stored values are calculated using linear and nonlinear addressing schemes. The nonlinear addressing scheme is used to adaptively vary the number of interpolation points as the slope of the sinusoid changes, leading to a greatly reduced ROM size. The proposed architecture achieves a high compression ratio with a spurious response comparable to that of recent ROM compression techniques. To validate the proposed DDS architecture, the linear, nonlinear, and conventional DDS ROM architectures were implemented in a Xilinx Spartan II FPGA and their spurious performances were compared.  相似文献   

14.
The combination of bottom-up and top-down processes to organize nanophases in hybrid materials is a key strategy to create functional materials. We found that oxide and sulphide nanocrystals become spontaneously dispersed in organic media during the self-assembly of nanoribbon supramolecular polymers. These nanoribbon polymers form by self-assembly of dendron rodcoil molecules, which contain three molecular blocks with dendritic, rod-like, and coil-like architectures. In an electric field these supramolecular assemblies carrying bound nanocrystals migrate to the positive electrode in an etched channel and align in the field. In the system containing ZnO nanocrystals as the inorganic component, both phases are oriented in the hybrid material forming an ultraviolet lasing medium with a lower threshold relative to pure ZnO nanocrystals.  相似文献   

15.
In this work we prepared a fluorine containing bent-shaped liquid crystal from biphenyl as the central core and rod-like azobenzene mesogens as the side arms, namely 4',3-biphenyl bis[4-(4'-hexadecanloxy-3-fluorophenylazo)benzoate] (L104). The self-assembly behaviors of L104 molecules on graphite surface were investigated by using scanning tunneling microscopy (STM) under ambient conditions. The high-resolution STM images of L104 assemblies revealed three kinds of structures showing the joint effects of dipole-dipole interactions originated from the fluorine and the bent-core alignments for maximizing pi-pi interactions. These observations may be beneficial for understanding the assembly mechanism and designs for novel banana-shaped liquid crystal molecules.  相似文献   

16.
低硅沸石骨架结构及其稳定性的模拟计算   总被引:2,自引:0,他引:2  
采用晶格能极小化技术模拟计算了一系列结构的低硅沸石全硅骨架晶格,预测了它们的骨架结构和晶格能.计算结果与二氧化硅致密α一石英相比较,发现这些低硅沸石彼此间的晶格能相差很小(<25kJ·mol-1),与α一石英相差43~68kJ·mol-1这意味着在低硅沸石的合成中,特定结构骨架的形成仅需要较少的能量;可以解释低硅沸石骨架结构的相似性和多样性.同时讨论了计算晶格能和骨架结构间的关系,结果表明随着低硅沸石骨架密度的增大,全硅骨架晶格能呈降低趋势.分析这些低硅沸石的XRD数据发现在它们的结构中包含较短的 Si-O键长(0.1557nm),很长的 Si-O键长(01764nm), O-Si-O键角有大的分布范围(93.38~133.41°),Si-O-Si键角平均在144°左右并且具有更大的分布范围(127~180°)。  相似文献   

17.
A simple procedure for selection of tight-binding inhibitors of mutant dihydrofolate reductases from Plasmodium falciparum (PfDHFRs) based on preferential binding to the enzyme immobilized on a Sepharose column has been described. PfDHFRs with a cysteine residue at the C-terminal have been prepared in order to immobilize to a thiopropyl-Sepharose gel via S-S linkage. The amount of immobilized DHFRs was estimated to be 4-5 mg/g of dried gel, and the activities of bound DHFRs were comparable to that of free enzymes. The prepared immobilized enzyme has been used for the selection of tight-binding inhibitors from combinatorial libraries, based on the affinities of each ligand with the enzyme. Free ligands were then identified and analyzed quantitatively by high-performance liquid chromatography-mass spectrometry, and the components with high binding affinity of the library could thus be realized. Results could be confirmed by quantitative analysis of the bound ligands released from the enzyme by guanidine hydrochloride treatment.  相似文献   

18.
Atomically precise copper nanoclusters (Cu NCs) have attracted tremendous attention for their huge potential in many applications. However, the uncertainty of the growth mechanism and complexity of the crystallization process hinder the in-depth understanding of their properties. In particular, the ligand effect has been rarely explored at the atomic/molecular level due to the lack of feasible models. Herein, three isostructural Cu6 NCs ligated with diverse mono-thiol ligands (2-mercaptobenzimidazole, 2-mercaptobenzothiazole, and 2-mercaptobenzoxazole, respectively) are successfully synthesized, which provide an ideal platform to unambiguously address the intrinsic role of ligands. The overall atom-by-atom structural evolution process of Cu6 NCs is mapped out with delicate mass spectrometry (MS) for the first time. It is intriguingly found that the ligands, albeit only atomic difference (NH, O, and S), can profoundly affect the building-up processes, chemical properties, atomic structures, as well as catalytic activities of Cu NCs. Furthermore, ion-molecule reactions combined with density functional theory (DFT) calculations demonstrate that the defective sites formed on ligand can significantly contribute to the activation of molecular oxygen. This study provides fundamental insights into the ligand effect, which is vital for the delicate design of high-efficient Cu NCs-based catalysts.  相似文献   

19.
A method has been developed to quantitatively determine the composition of d-lactide and meso-lactide stereoisomer impurities in poly(lactide) containing predominantly l-lactide. In this method, the stereosequence information obtained from a few well-resolved resonances in the (1)H NMR spectrum representing RR and R stereogenic defects is used. The d-lactide and meso-lactide as minor components lead to RR and R stereogenic defects, respectively, which influence the isotactic chain length distribution and hence affect the polymer properties. Analytical equations relating the stereosequence probability to the lactide feed composition are not available due the complicated kinetics involved for the melt polymerization; viz. the preference for syndiotactic lactide addition decreases with reducing residual lactide concentration in the batch process. Hence, empirical correlations were determined by least-squares fit to the predictions for the specific stereosequence probabilities provided by Monte Carlo calculations of a number of lactide stereocopolymerizations. The Monte Carlo calculations simulate the kinetics observed for melt polymerization at 180 °C catalyzed by Sn(II) bis(2-ethylhexanoate) (Sn(II) octoate) in a 1:10 000 catalyst/lactide ratio.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号