共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion mobility spectrometry (IMS) coupled to orthogonal time-of-flight mass spectrometry (TOF) has shown significant promise for the characterization of complex biological mixtures. The enormous complexity of biological samples (e.g., from proteomics) and the need for both biological and technical analysis replicates imposes major challenges for multidimensional separation platforms with regard to both sensitivity and sample throughput. A major potential attraction of the IMS-TOF MS platform is separation speeds exceeding that of conventional condensed-phase separations by orders of magnitude. Known limitations of the IMS-TOF MS platforms that presently mitigate this attraction include the need for extensive signal averaging due to factors that include significant ion losses in the IMS-TOF interface and an ion utilization efficiency of less than approximately 1% with continuous ion sources (e.g., ESI). We have developed a new multiplexed ESI-IMS-TOF mass spectrometer that enables lossless ion transmission through the IMS-TOF as well as a utilization efficiency of >50% for ions from the ESI source. Initial results with a mixture of peptides show a approximately 10-fold increase in signal-to-noise ratio with the multiplexed approach compared to a signal averaging approach, with no reduction in either IMS or TOF MS resolution. 相似文献
2.
Belov ME Clowers BH Prior DC Danielson WF Liyu AV Petritis BO Smith RD 《Analytical chemistry》2008,80(15):5873-5883
Ion mobility spectrometry-time-of-flight mass spectrometry (IMS-TOFMS) has been increasingly used in analysis of complex biological samples. A major challenge is to transform IMS-TOFMS to a high-sensitivity, high-throughput platform, for example, for proteomics applications. In this work, we have developed and integrated three advanced technologies, including efficient ion accumulation in an ion funnel trap prior to IMS separation, multiplexing (MP) of ion packet introduction into the IMS drift tube, and signal detection with an analog-to-digital converter, into the IMS-TOFMS system for the high-throughput analysis of highly complex proteolytic digests of, for example, blood plasma. To better address variable sample complexity, we have developed and rigorously evaluated a novel dynamic MP approach that ensures correlation of the analyzer performance with an ion source function and provides the improved dynamic range and sensitivity throughout the experiment. The MP IMS-TOFMS instrument has been shown to reliably detect peptides at a concentration of 1 nM in the presence of a highly complex matrix, as well as to provide a 3 orders of magnitude dynamic range and a mass measurement accuracy of better than 5 ppm. When matched against human blood plasma database, the detected IMS-TOF features were found to yield approximately 700 unique peptide identifications at a false discovery rate (FDR) of approximately 7.5%. Accounting for IMS information gave rise to a projected FDR of approximately 4%. Signal reproducibility was found to be greater than 80%, while the variations in the number of unique peptide identifications were <15%. A single sample analysis was completed in 15 min that constitutes almost 1 order of magnitude improvement compared to a more conventional LC-MS approach. 相似文献
3.
High-sensitivity ion mobility spectrometry/mass spectrometry using electrodynamic ion funnel interfaces 总被引:1,自引:0,他引:1
Tang K Shvartsburg AA Lee HN Prior DC Buschbach MA Li F Tolmachev AV Anderson GA Smith RD 《Analytical chemistry》2005,77(10):3330-3339
The utility of ion mobility spectrometry (IMS) for separation of mixtures and structural characterization of ions has been demonstrated extensively, including in biological and nanoscience contexts. A major attraction of IMS is its speed, several orders of magnitude greater than that of condensed-phase separations. Nonetheless, IMS combined with mass spectrometry (MS) has remained a niche technique, substantially because of limited sensitivity resulting from ion losses at the IMS-MS junction. We have developed a new electrospray ionization (ESI)-IMS-QTOF MS instrument that incorporates electrodynamic ion funnels at both front ESI-IMS and rear IMS-QTOF interfaces. The front funnel is of the novel "hourglass" design that efficiently accumulates ions and pulses them into the IMS drift tube. Even for drift tubes of 2-m length, ion transmission through IMS and on to QTOF is essentially lossless across the range of ion masses relevant to most applications. The rf ion focusing at the IMS terminus does not degrade IMS resolving power, which exceeds 100 (for singly charged ions) and is close to the theoretical limit. The overall sensitivity of the present ESI-IMS-MS system is comparable to that of commercial ESI-MS, which should make IMS-MS suitable for analyses of complex mixtures with ultrahigh sensitivity and exceptional throughput. 相似文献
4.
Cisplatin and its mono- and dihydrated complexes have been separated using a high-field asymmetric waveform ion mobility spectrometry (FAIMS) analyzer interfaced with electrospray ionization (ESI) and ion trap mass spectrometry (ITMS). The addition of helium to the nitrogen curtain/carrier gas in the FAIMS device improved both the sensitivity and selectivity of the electrospray analysis. Introduction of a three-component mixture as curtain/carrier gas, nitrogen, helium, and carbon dioxide, resulted in further improvements to sensitivity. Compared with conventional ESI-MS, the background chemical noise in the ESI-FAIMS-ITMS spectrum was dramatically reduced, resulting in over 30-fold improvement in the signal-to-noise ratio for cisplatin. Analytical results were linear over the concentration range 10-200 ng/mL for intact cisplatin with a corresponding detection limit determined of 0.7 ng/mL with no derivatization or chromatographic separation prior to analysis. 相似文献
5.
The analysis of intact glycopeptides by mass spectrometry is challenging due to the numerous possibilities for isomerization, both within the attached glycan and the location of the modification on the peptide backbone. Here, we demonstrate that high field asymmetric wave ion mobility spectrometry (FAIMS), also known as differential ion mobility, is able to separate isomeric O-linked glycopeptides that have identical sequences but differing sites of glycosylation. Two glycopeptides from the glycoprotein mucin 5AC, GT(GalNAc)TPSPVPTTSTTSAP and GTTPSPVPTTST(GalNAc)TSAP (where GalNAc is O-linked N-acetylgalactosamine), were shown to coelute following reversed-phase liquid chromatography. However, FAIMS analysis of the glycopeptides revealed that the compensation voltage ranges in which the peptides were transmitted differed. Thus, it is possible at certain compensation voltages to completely separate the glycopeptides. Separation of the glycopeptides was confirmed by unique reporter ions produced by supplemental activation electron transfer dissociation mass spectrometry. These fragments also enable localization of the site of glycosylation. The results suggest that glycan position plays a key role in determining gas-phase glycopeptide structure and have implications for the application of FAIMS in glycoproteomics. 相似文献
6.
The atmospheric pressure chemical ionization of triacetone triperoxide (TATP) with subsequent separation and detection by ion mobility spectrometry has been studied. Positive ionization with hydronium reactant ions produced only fragments of the TATP molecule, with m/z 91 ion being the most predominant species. Ionization with ammonium reactant ions produced a molecular adduct at m/z 240. The reduced mobility value of this ion was constant at 1.36 cm(2)V(-1)s(-1) across the temperature range from 60 to 140 °C. The stability of this ion was temperature dependent and did not exist at temperatures above 140 °C, where only fragment ions were observed. The introduction of ammonia vapors with TATP resulted in the formation of m/z 58 ion. As the concentration of ammonia increased, this smaller ion appeared to dominate the spectra and the TATP-ammonium adduct decreased in intensity. The ion at m/z 58 has been noted by several research groups upon using ammonia reagents in chemical ionization, but the identity was unknown. Evidence presented here supports the formation of protonated 2-propanimine. A proposed mechanism involves the addition of ammonia to the TATP-ammonium adduct followed by an elimination reaction. A similar mechanism involving the chemical ionization of acetone with excess ammonia also showed the formation of m/z 58 ion. TATP vapors from a solid sample were detected with a hand-held ion mobility spectrometer operated at room temperature. The TATP-ammonium molecular adduct was observed in the presence of ammonia and TATP vapors with this spectrometer. 相似文献
7.
Traveling wave ion mobility mass spectrometry (TWIM MS) was combined with gradient tandem mass spectrometry (gMS(2)) to deconvolute and characterize superimposed ions with different charges and shapes formed by electrospray ionization (ESI) of self-assembled, hexameric metallomacrocycles composed of terpyridine-based ligands and Cd(II) ions. ESI conditions were optimized to obtain intact hexameric cation assemblies in a low charge state (2+), in order to minimize overlapping fragments of the same mass-to-charge ratio. With TWIM MS, intact hexameric ions could be separated from remaining fragments and aggregates. Collisional activation of these hexameric ions at varying collision energies (gMS(2)), followed by TWIM separation, was then performed to resolve macrocyclic from linear hexameric species. Because of the different stabilities of these architectures, gMS(2) changes their relative amounts, which can be monitored individually after subsequent ion mobility separation. On the basis of this unique strategy, hexameric cyclic and linear isomers have been successfully resolved and identified. Complementary structural information was gained by the gMS(2) fragmentation pattern of the metallosupramolecules, acquired by collisionally activated dissociation after TWIM dispersion. TWIM MS interfaced with gMS(2) should be particularly valuable for the characterization of a variety of supramolecular polymers, which often contain isomeric architectures that yield overlapping fragments and aggregates upon ESI MS analysis. 相似文献
8.
Secondary electrospray ionization ion mobility spectrometry/mass spectrometry of illicit drugs 总被引:2,自引:0,他引:2
A secondary electrospray ionization (SESI) method was developed as a nonradioactive ionization source for ion mobility spectrometry (IMS). This SESI method relied on the gas-phase interaction between charged particles created by electrospray ionization (ESI) and neutral gaseous sample molecules. Mass spectrometry (MS) was used as the detection method after ion mobility separation for ion identification. Preliminary investigations focussed on understanding the ionization process of SESI. The performance of ESI-IMS and SESI-IMS for illicit drug detection was evaluated by determining the analytical figures of merit. In general, SESI had a higher ionization efficiency for small volatile molecules compared with the electrospray method. The potential of developing a universal interface for both GC- and LC-MS with an addition stage of mobility separation was demonstrated. 相似文献
9.
Detection of bacteria by ion mobility spectrometry 总被引:3,自引:0,他引:3
10.
Clowers BH Belov ME Prior DC Danielson WF Ibrahim Y Smith RD 《Analytical chemistry》2008,80(7):2464-2473
Due to the inherently low duty cycle of ion mobility spectrometry (IMS) experiments that sample from continuous ion sources, a range of experimental advances have been developed to maximize ion utilization efficiency. The use of ion trapping and accumulation approaches prior to the ion mobility drift tube has demonstrated significant gains over discrete sampling from continuous sources but have traditionally relied upon a signal averaging (SA) to attain analytically useful signal-to-noise ratios (SNR). Multiplexed (MP) techniques based upon the Hadamard transform offer an alternative experimental approach by which ion utilization efficiency can be elevated from approximately 1 to approximately 50%. Recently, our research group demonstrated a unique multiplexed ion mobility time-of-flight (MP-IMS-TOF) approach that incorporates ion trapping and can extend ion utilization efficiency beyond 50%. However, the spectral reconstruction of the multiplexed signal using this experiment approach requires the use of sample-specific weighting designs. Such general weighting designs have been shown to significantly enhance ion utilization efficiency using this MP technique, but cannot be universally applied. By modifying both the ion trapping and the pseudorandom sequence (PRS) used for the MP experiment, we have eliminated the need for complex weighting matrices. For both simple and complex mixtures, SNR enhancements of up to 13 were routinely observed as compared to the SA-IMS-TOF approach. In addition, this new class of PRS provides a 2-fold enhancement in the number of ion gate pulses per unit time compared to the traditional HT-IMS experiment. 相似文献
11.
Differential ion mobility spectrometry (FAIMS) integrated with mass spectrometry (MS) is a powerful new tool for biological and environmental analyses. Large proteins occupy regions of FAIMS spectra distinct from peptides, lipids, or other medium-size biomolecules, likely because strong electric fields align huge dipoles common to macroions. Here we confirm this phenomenon in separations of proteins at extreme fields using FAIMS chips coupled to MS and demonstrate their use to detect even minor amounts of large proteins in complex matrixes of smaller proteins and peptides. 相似文献
12.
This article introduces the concept of chiral ion mobility spectrometry (CIMS) and presents examples demonstrating the gas-phase separation of enantiomers of a wide range of racemates including pharmaceuticals, amino acids, and carbohydrates. CIMS is similar to traditional ion mobility spectrometry, where gas-phase ions, when subjected to a potential gradient, are separated at atmospheric pressure due to differences in their shapes and sizes. In addition to size and shape, CIMS separates ions based on their stereospecific interaction with a chiral gas. In order to achieve chiral discrimination by CIMS, an asymmetric environment was provided by doping the drift gas with a volatile chiral reagent. In this study (S)-(+)-2-butanol was used as a chiral modifier to demonstrate enantiomeric separations of atenolol, serine, methionine, threonine, methyl alpha-glucopyranoside, glucose, penicillamine, valinol, phenylalanine, and tryptophan from their respective racemic mixtures. 相似文献
13.
Separation of isomeric peptides using electrospray ionization/high-resolution ion mobility spectrometry 总被引:3,自引:0,他引:3
In this paper, the first examples of baseline separation of isomeric macromolecules by electrospray ionization/ion mobility spectrometry (ESI/IMS) at atmospheric pressure are presented. The behavior of a number of different isomeric peptides in the IMS was investigated using nitrogen as a drift gas. The IMS was coupled to a quadrupole mass spectrometer, which was used for identification and selective detection of the electrosprayed ions. The mobility data were used to determine their average collision cross sections. The gas-phase ions of isomeric peptides were found to have different collision cross sections. In all cases, doubly charged ions exhibited significantly (8-20%) larger collision cross sections than the respective singly charged species. The analysis of mixtures of the isomeric peptides clearly demonstrated the capability of IMS to separate gas-phase peptide ions due to small differences in their conformational structures, which cannot be determined by mass spectrometry. An actual resolving power of 80 was achieved for two doubly charged reversed sequenced pentapeptides. Baseline separation was provided for ions differing by only 2.5% in their measured collision cross sections; partial separation was shown for isomeric ions exhibiting differences as small as 1.1%. 相似文献
14.
Recently, we introduced a new approach to chiral separation and analysis of amino acids by chiral complexation and electrospray high-field asymmetric waveform ion mobility spectrometry coupled to mass spectrometry (ESI-FAIMS-MS). In the present work, we extended this approach to the separation of the drug compound terbutaline. Terbutaline enantiomers were complexed with metal ions and an amino acid to form diastereomeric complexes of the type [M(II)(L-Ref)2((+)/(-)-A)-H](+), where M(II) is a divalent metal ion, L-Ref is an amino acid in its L-form, and A is the terbutaline analyte. When metal and reference compound were suitably chosen, these complexes were separable by FAIMS. We also detected and characterized larger clusters that were transmitted at distinct FAIMS compensation voltages (CV), disturbing data analysis by disintegrating after the FAIMS separation and forming complexes of the same composition [M(II)(L-Ref)2((+)/(-)-A)-H](+), thus giving rise to additional peaks in the FAIMS CV spectra. This undesired phenomenon could be largely avoided by adjusting the mass spectrometer skimmer voltages in such a way that said larger clusters remained intact. In the quantitative part of the present work, we achieved a limit of detection of 0.10% (-)-terbutaline in a sample of (+)-terbutaline. The limit of detection and analysis time per sample compared favorably to literature values for chiral terbutaline separation by HPLC and CE. 相似文献
15.
Campuzano I Bush MF Robinson CV Beaumont C Richardson K Kim H Kim HI 《Analytical chemistry》2012,84(2):1026-1033
We present the use of drug-like molecules as a traveling wave (T-wave) ion mobility (IM) calibration sample set, covering the m/z range of 122.1-609.3, the nitrogen collision cross-section (Ω(N(2))) range of 124.5-254.3 ?(2) and the helium collision cross-section (Ω(He)) range of 63.0-178.8 ?(2). Absolute Ω(N(2)) and Ω(He) values for the drug-like calibrants and two diastereomers were measured using a drift-tube instrument with radio frequency (RF) ion confinement. T-wave drift-times for the protonated diastereomers betamethasone and dexamethasone are reproducibly different. Calibration of these drift-times yields T-wave Ω(N(2)) values of 189.4 and 190.4 ?(2), respectively. These results demonstrate the ability of T-wave IM spectrometry to differentiate diastereomers differing in Ω(N(2)) value by only 1 ?(2), even though the resolution of these IM experiments were ~40 (Ω/ΔΩ). Demonstrated through density functional theory optimized geometries and ionic electrostatic surface potential analysis, the small but measurable mobility difference between the two diastereomers is mainly due to short-range van der Waals interactions with the neutral buffer gas and not long-range charge-induced dipole interactions. The experimental RF-confining drift-tube and T-wave Ω(N(2)) values were also evaluated using a nitrogen based trajectory method, optimized for T-wave operating temperature and pressures, incorporating additional scaling factors to the Lennard-Jones potentials. Experimental Ω(He) values were also compared to the original and optimized helium based trajectory methods. 相似文献
16.
A H Lawrence 《Analytical chemistry》1989,61(4):343-349
Chemical ionization ion mobility spectrometry (CI-IMS) was used to characterize a number of benzodiazepines. In almost every example studied, the positive ion mobility spectrum consisted of a single ion peak corresponding to [M]+ or [MH]+. With some compounds, e.g., oxazepam, lorazepam, and chlordiazepoxide, fragment ions were noted that serve as good markers for the identification of these chemicals. Reduced mobility constants (K0) for the most significant peaks were calculated, and all ions produced were mass-analyzed by injection into a quadrupole mass spectrometer. The results of this study point to the potential of IMS as a qualitative tool for the rapid detection (analysis time less than 10 s) and reliable identification of benzodiazepines. Preliminary results on the application of digital signal processing and a second-derivative algorithm to partially overlapping IMS peaks are presented, and potential improvements are discussed. 相似文献
17.
Quantifying peptides in isotopically labeled protease digests by ion mobility/time-of-flight mass spectrometry 总被引:2,自引:0,他引:2
Ion mobility/time-of-flight techniques have been used to analyze mixtures of isotopically labeled peptides. The isotopic labels were generated by treatment of peptides with N-acetoxysuccinimide (or the deuterated analogue), which results in acetylation (or deuterioacetylation) of the primary amines (i.e., the N-terminus and lysine residues). The relative concentrations of a peptide in each sample are determined by comparing the peak intensities for isotopic pairs. An important consideration is that as mixtures become increasingly complex, isotopic pairs of peaks may overlap with other peaks in the mass spectrum. The influence of the acetyl and deuterioacetyl groups on the mobilities of peptides is considered. The coincidence in mobilities of isotopic pairs provides a means of distinguishing isotopic pairs from other isobaric interferences. 相似文献
18.
Posttranslational modification by the small ubiquitin-related modifier (SUMO) is a highly regulated modification, which is often restricted to very specific cellular events. A number of analytical strategies for identification of SUMOylated proteins have been previously reported in the literature. A new screening method for SUMOylated peptides based on ion mobility mass spectrometry is presented. Using poly-SUMO2 as a model system, a two-enzyme trypsin/chymotrypsin digestion was performed to reduce the size of the isopeptide conjugated to the substrate lysine residue. Traveling wave ion mobility mass spectrometry was used to screen for peptides containing the QQQTGG isopeptide tag from SUMO, which increases the mass and size of the peptide by 618 Da. This increase in mass along with solution conditions to promote higher charge states allows the isopeptides to be separated from the typically smaller and lesser charged linear peptides. On the basis of these findings, this method can be used as a quick and easy screening method for identifying possible SUMO isopeptides. 相似文献
19.
Coupling high-pressure MALDI with ion mobility/orthogonal time-of-flight mass spectrometry 总被引:3,自引:0,他引:3
Gillig KJ Ruotolo B Stone EG Russell DH Fuhrer K Gonin M Schultz AJ 《Analytical chemistry》2000,72(17):3965-3971
A new ion mobility/time-of-flight mass spectrometer employing a high-pressure MALDI source has been designed and tested. The prototype instrument operates at a source/drift cell pressure of 1-10 Torr helium, resulting in a mobility resolution of approximately 25. A small time-of-flight mass spectrometer (20 cm) with a mass resolution of up to 200 has been attached to the drift cell to identify (in terms of mass-to-charge ratio) the separated ions. A simple tripeptide mixture has been separated in the drift tube and mass identified as singly protonated species. The ability to separate peptide mixtures, e.g., tryptic digest of a protein, is illustrated and compared to results obtained on a high-vacuum time-of-flight instrument. 相似文献
20.
We have developed a novel instrument that combines ion mobility spectrometry, mass spectro-metry, and photoelectron spectroscopy. The instrument couples an electrospray ion source, a high-transmission ion mobility cell based on ion funnels, a quadrupole mass filter, and a time-of-flight (magnetic bottle) photoelectron spectrometer operated with a pulsed detachment laser. We show that the instrument can resolve highly structured anion arrival time distributions and at the same time provide corresponding photoelectron spectra-using the DNA oligonucleotide ion [dC(6) - 5H](5-) as a test case. For this multianion we find at least four different, noninterconverting isomers (conformers) simultaneously present in the gas phase at room temperature. For each of these we record well-resolved and remarkably different photoelectron spectra at each of three different detachment laser wavelengths. Two-dimensional ion mobility/electron binding energy plots can be acquired with an automated data collection procedure. We expect that this kind of instrument will significantly improve the capabilities for structure determination of (bio)molecular anions in the gas phase. 相似文献