首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Here we describe the first reported use of a Gram-positive bacterial system for the selection of affinity proteins from large combinatorial libraries displayed on the surface of Staphylococcus carnosus. An affibody library of 3 x 10(9) variants, based on a 58 residue domain from staphylococcal protein A, was pre-enriched for binding to human tumor necrosis factor-alpha (TNF-alpha) using one cycle of phage display and thereafter transferred to the staphylococcal host ( approximately 10(6) variants). The staphylococcal-displayed library was subjected to three rounds of flow-cytometric sorting, and the selected clones were screened and ranked by on-cell analysis for binding to TNF-alpha and further characterized using biosensor analysis and circular dichroism spectroscopy. The successful sorting yielded three different high-affinity binders (ranging from 95 pM to 2.2 nM) and constitutes the first selection of a novel affinity protein using Gram-positive bacterial display. The method combines the simplicity of working with a bacterial host with the advantages of displaying recombinant proteins on robust Gram-positive bacteria as well as using powerful flow cytometry in the selection and characterization process.  相似文献   

3.
Combinatorial libraries of synthetic DNA are increasingly being used to identify and evolve proteins with novel folds and functions. An effective strategy for maximizing the diversity of these libraries relies on the assembly of large genes from smaller fragments of synthetic DNA. To optimize library assembly and screening, it is desirable to remove from the synthetic libraries any sequences that contain unintended frameshifts or stop codons. Although genetic selection systems can be used to accomplish this task, the tendency of individual segments to yield misfolded or aggregated products can decrease the effectiveness of these selections. Furthermore, individual protein domains may misfold when removed from their native context. We report the development and characterization of an in vivo system to preselect sequences that encode uninterrupted gene segments regardless of the foldedness of the encoded polypeptide. In this system, the inserted synthetic gene segment is separated from an intein/thymidylate synthase (TS) reporter domain by a polyasparagine linker, thereby permitting the TS reporter to fold and function independently of the folding and function of the segment-encoded polypeptide. TS-deficient Escherichia coli host cells survive on selective medium only if the insert is uninterrupted and in-frame, thereby allowing selection and amplification of desired sequences. We demonstrate that this system can be used as a highly effective preselection tool for the production of large, diverse and high-quality libraries of de novo protein sequences.  相似文献   

4.
The possibility of increasing the affinity of a Taq DNA polymerasespecific binding protein (affibody) was investigated by an -helixshuffling strategy. The primary affibody was from a naive combinatoriallibrary of the three-helix bundle Z domain derived from staphylococcalprotein A. A hierarchical library was constructed through selectivere-randomization of six amino acid positions in one of the two-helices of the domain, making up the Taq DNA polymerase bindingsurface. After selections using monovalent phage display technology,second generation variants were identified having affinities(KD) for Taq DNA polymerase in the range of 30–50 nM asdetermined by biosensor technology. Analysis of binding dataindicated that the increases in affinity were predominantlydue to decreased dissociation rate kinetics. Interestingly,the affinities observed for the second generation Taq DNA polymerasespecific affibodies are of similar strength as the affinitybetween the original protein A domain and the Fc domain of humanimmunoglobulin G. Further, the possibilities of increasing theapparent affinity through multimerization of affibodies wasdemonstrated for a dimeric version of one of the second generationaffibodies, constructed by head-to-tail gene fusion. As comparedwith its monomeric counterpart, the binding to sensor chip immobilizedTaq DNA polymerase was characterized by a threefold higher apparentaffinity, due to slower off-rate kinetics. The results showthat the binding specificity of the protein A domain can bere-directed to an entirely different target, without loss ofbinding strength.  相似文献   

5.
Protein scaffolds derived from non-immunoglobulin sources are increasingly being adapted and engineered to provide unique binding molecules with a diverse range of targeting specificities. The ColE7 immunity protein (Im7) from Escherichia coli is potentially one such molecule, as it combines the advantages of (i) small size, (ii) stability conferred by a conserved four anti-parallel alpha-helical framework and (iii) availability of variable surface loops evolved to inactivate members of the DNase family of bacterial toxins, forming one of the tightest known protein-protein interactions. Here we describe initial cloning and protein expression of Im7 and its cognate partner the 15 kDa DNase domain of the colicin E7. Both proteins were produced efficiently in E.coli, and their in vitro binding interactions were validated using ELISA and biosensor. In order to assess the capacity of the Im7 protein to accommodate extensive loop region modifications, we performed extensive molecular modelling and constructed a series of loop graft variants, based on transfer of the extended CDR3 loop from the IgG1b12 antibody, which targets the gp120 antigen from HIV-1. Loop grafting in various configurations resulted in chimeric proteins exhibiting retention of the underlying framework conformation, as measured using far-UV circular dichroism spectroscopy. Importantly, there was low but measurable transfer of antigen-specific affinity. Finally, to validate Im7 as a selectable scaffold for the generation of molecular libraries, we displayed Im7 as a gene 3 fusion protein on the surface of fd bacteriophages, the most common library display format. The fusion was successfully detected using an anti-Im7 rabbit polyclonal antibody, and the recombinant phage specifically recognized the immobilized DNase. Thus, Im7 scaffold is an ideal protein display scaffold for the future generation and for the selection of libraries of novel binding proteins.  相似文献   

6.
We have engineered human epidermal growth factor (EGF) by directed evolution through yeast surface display for significantly enhanced affinity for the EGF receptor (EGFR). Statistical analysis of improved EGF mutants isolated from randomly mutated yeast-displayed libraries indicates that mutations are biased towards substitutions at positions exhibiting significant phylogenetic variation. In particular, mutations in high-affinity EGF mutants are statistically biased towards residues found in orthologous EGF species. This same trend was also observed with other proteins engineered through directed evolution in our laboratory (EGFR, interleukin-2) and in a meta-analysis of reported results for engineered subtilisin. By contrast, reported loss-of-function mutations in EGF were biased towards highly conserved positions. Based on these findings, orthologous mutations were introduced into a yeast-displayed EGF library by a process we term shotgun ortholog scanning mutagenesis (SOSM). EGF mutants with a high frequency of the introduced ortholog mutations were isolated through screening the library for enhanced binding affinity to soluble EGFR ectodomain. These mutants possess a 30-fold increase in binding affinity over wild-type EGF to EGFR-transfected fibroblasts and are among the highest affinity EGF proteins to be engineered to date. Collectively, our findings highlight a general approach for harnessing information present in phylogenetic variability to create useful genetic diversity for directed evolution. Our SOSM method exploits the benefits of library diversity obtained through complementary methods of error-prone PCR and DNA shuffling, while circumventing the need for acquisition of multiple genes for family or synthetic shuffling.  相似文献   

7.
The use of random mutagenesis in concert with protein display technologies to rapidly select high affinity antibody variants is an established methodology. In some cases, DNA recombination has been included in the strategy to enable selection of mutations which act cooperatively to improve antibody function. In this study, the impact of L-Shuffling DNA recombination on the eventual outcome of an in vitro affinity maturation has been experimentally determined. Parallel evolution strategies, with and without a recombination step, were carried out and both methods improved the affinity of an anti-Fas single chain variable fragment (scFv). The recombination step resulted in an increased population of affinity-improved variants. Moreover, the most improved variant, with a 22-fold affinity gain, emerged only from the recombination-based approach. An analysis of mutations preferentially selected in the recombined population demonstrated strong cooperative effects when tested in combination with other mutations but small, or even negative, effects on affinity when tested in isolation. These results underline the ability of combinatorial library approaches to explore very large regions of sequence space to find optimal solutions in antibody evolution studies.  相似文献   

8.
We describe here the rapid selection of specific MAP-kinase binders from a combinatorial library of designed ankyrin repeat proteins (DARPins). A combined in vitro/in vivo selection approach, based on ribosome display and the protein fragment complementation assay (PCA), yielded a large number of different binders that are fully functional in the cellular cytoplasm. Ribosome-display selection pools of four successive selection rounds were examined to monitor the enrichment of JNK2-specific DARPins. Surprisingly, only one round of ribosome display with subsequent PCA selection of this pool was necessary to isolate a first specific binder with micromolar affinity. After only two rounds of ribosome-display selection followed by PCA, virtually all DARPins showed JNK2-specific binding, with affinities in the low nanomolar range. The enrichment factor of ribosome display thus approaches 10(5) per round. In a second set of experiments, similar results were obtained with the kinases JNK1 and p38 as targets. Again, almost all investigated DARPins obtained after two rounds of ribosome display showed specific binding to the targets used, JNK1 or p38. In all three selection experiments the identified DARPins possess very high specificity for the target kinase. Taken together, the combination of ribosome display and PCA selections allowed the identification of large pools of binders at unparalleled speed. Furthermore, DARPins are applicable in intracellular selections and immunoprecipitations from the extract of eukaryotic cells.  相似文献   

9.
The deletion of nine residues from the C-terminus of the bacterialchloramphenicol acetyltransferase (CAT) results in depositionof the mutant protein in cytoplasmic inclusion bodies and lossof chloramphenicol resistance in Escherichia coli. This foldingdefect is relieved by C-terminal fusion of the polypeptide withas few as two residues. Based on these observations, efficientpositive selection for the cloning of DNA fragments has beendemonstrated. The cloning vector encodes a C-terminally truncatedCAT protein. Restriction sites in front of the stop codon allowthe insertion of target DNA, resulting in the production ofproperly folded CAT fusion proteins and regained chloramphenicolresistance. The positive selection of recombinants is accomplishedby growth of transformants on chloramphenicol-containing agarplates. The method appears particularly convenient for the cloningof DNA fragments amplified by the PCR because minimal informationto restore CAT folding can be included in the primers. The cloningof random sequences shows that the folding defect can be relievedby fusion to a wide variety of peptides, providing great flexibilityto the positive selection system. This vector may also contributeto the determination of the role of the C-terminus in CAT folding.  相似文献   

10.
Yeast surface display and sorting by flow cytometry are now widely used to direct the evolution of protein binding such as single-chain antibodies or scFvs. The available commercial yeast display vector pYD1 (Invitrogen) displays the protein of interest flanked on the N-terminus by Aga2, the disulfide of which binds the myristylated surface membrane protein Aga1. We have noted that two anti-CD3epsilon scFvs expressed as fusion proteins suffer a 30- to 100-fold loss of affinity when placed NH(2) terminal to either truncated toxins or human serum albumin. In the course of affinity maturing one of these scFv (FN18) using pYD1 we noted that the affinity towards the ectodomain of monkey CD3epsilongamma was too low to measure. Consequently we rebuilt pYD1 tethering the scFv off the NH(2) terminus of Aga2. This display vector, pYD5, now gave a positive signal displaying FN18 scFv with its ligand, monkey CD3epsilongamma. The apparent equilibrium association constant of the higher affinity scFv directed at human CD3epsilongamma increased approximately 3-fold when displayed on pYD5 compared with pYD1. These data show that for certain yeast-displayed scFvs a carboxy-tethered scFv can result in increased ligand-scFv equilibrium association constants and thereby extend the low range of affinity maturation measurements.  相似文献   

11.
A combinatorial library of an {alpha}-helical bacterial receptor domain   总被引:3,自引:0,他引:3  
The construction and characterization of a combinatorial libraryof a solvent-exposed surface of an -helical domain derived froma bacterial receptor is described. Using a novel solid-phaseapproach, the library was assembled in a directed and successivemanner utilizing single-stranded oligonucleotides containingmultiple random substitutions for the variegated segments ofthe gene fragment The simultaneous substitution of 13 residuesto all 20 possible amino acids was carried out in a region spanning81 nucleotides. The randomization was made in codons for aminoacids that were modelled to be solvent accessible at a surfacemade up from two of the three a-helices of a monovalent Fc-bindingdomain of staphylococcal protein A. After cloning of the PCR-amplifiedlibrary into a phagemid vector adapted for phage display ofthe mutants, DNA sequencing analysis suggested a random distributionof codons in the mutagenized positions. Four members of thelibrary with multiple substitutions were produced in Escherichiacoli as fusions to an albumin-binding affinity tag derived fromstreptococcal protein G. The fusion proteins were purified byhuman serum albumin affinity chromatography and subsequentlycharacterized by SDSelectrophoresis, CD spectroscopy and biosensoranalysis. The analyses showed that the mutant protein A derivativescould all be secreted as soluble full-length proteins. Furthermore,the CD analysis showed that all mutants, except one with a prolineintroduced into helix 2, have secondary structures in closeagreement with the wild-type domain. These results proved thatmembers of this -helical receptor library with multiple substitutionsin the solvent-exposed surface remain stable and soluble inE.coli. The possibility of using this library for a phenotypicselection strategy to obtain artificial antibodies with novelfunctions is discussed.  相似文献   

12.
Beside the interaction of the antigen-presenting major histocompatibility complex with the T-cell receptor, a co-stimulatory signal is required for T-cell activation in an immune response. To reduce immune-mediated graft rejection in corneal transplantation, where topical application of drugs in ointments or eye-drops may be possible, we selected single-chain antibody fragments (scFv) with binding affinity to rat CD86 (B7.2) that inhibit the co-stimulatory signal. We produced the IgV-like domain of rat CD86 as a fusion protein in Escherichia coli by refolding from inclusion bodies. This protein was used as a target for phage display selection of scFv from HuCAL-1, a fully artificial human antibody library. Selected binding molecules were shown to specifically bind to rat CD86 and inhibit the interaction of CD86 with CD28 and CTLA4 (CD152) in flow cytometry experiments. In an assay for CD86-dependent co-stimulation, the selected scFv fragment successfully inhibited the proliferation of T-cells induced by CD86-expressing P815 cells.  相似文献   

13.
A gene encoding a bacterial IgG Fc binding domain was designedand synthesized. The synthetic DNA fragment was cloned 3' toan inducible trpE promoter such that expression of the genein Escherichia coli produced abundant Fc binding protein fusedto the first seven amino acids of the trpE protein. The recombinantprotein contained a single Fc binding domain and demonstratedefficient binding to'human IgG in Western blot analysis. Thisprotein degraded rapidly following cell lysis in the absenceof protease inhibitors, but could be effectively protected bythe addition of protease inhibitor. After purification of theprotein by IgG affinity chromatography, IgG Fc binding abilitywas retained for at least 24 h at either 23 or 37°C andon heating for 15 min at temperatures up to 65°C. No immunoprecipitationwas observed in interactions between the monodomain Fc bindingprotein and IgG molecules. Unlike staphylococcal protein A,no detectable binding of the monodomain IgG Fc binding proteinwas observed to either IgM or IgA. Truncated proteins, expressedfrom a series of 3' deletions of the synthetic gene, were usedto estimate the minimum portion of a monodomain Fc binding proteinthat retained Fc binding ability.  相似文献   

14.
Ribosome display of mammalian receptor domains   总被引:2,自引:0,他引:2  
Many mammalian receptor domains, among them a large number of potential therapeutic target proteins, are highly aggregation-prone upon heterologous expression in bacteria. This severely limits functional studies of such receptor domains and also their engineering towards improved properties. One of these proteins is the Nogoreceptor, which plays a central role in mediating the inhibition of axon growth and functional recovery after injury of the adult mammalian central nervous system. We show here that the ligand binding domain of the Nogoreceptor folds to an active conformation in ternary ribosomal complexes, as formed in ribosome display. In these complexes the receptor is still connected, via a C-terminal tether, to the peptidyl tRNA in the ribosome and the mRNA also stays connected. The ribosome prevents aggregation of the protein, which aggregates as soon as the release from the ribosome is triggered. In contrast, no active receptor was observed in phage display, where aggregation appears to prevent incorporation of the protein into the phage coat. This strategy sets the stage for rapidly studying defined mutations of such aggregation-prone receptors in vitro and to improve their properties by in vitro evolution using the ribosome display technology.  相似文献   

15.
Selection and characterization of HER2/neu-binding affibody ligands   总被引:9,自引:0,他引:9  
Affibody® (affibody) ligands that are specific for the extracellulardomain of human epidermal growth factor receptor 2 (HER2/neu)have been selected by phage display technology from a combinatorialprotein library based on the 58 amino acid residue staphylococcalprotein A-derived Z domain. The predominant variants from thephage selection were produced in Escherichia coli, purifiedby affinity chromatography, and characterized by biosensor analyses.Two affibody variants were shown to selectively bind to theextracellular domain of HER2/neu (HER2-ECD), but not to controlproteins. One of the variants, denoted His6-ZHER2/neu:4, wasdemonstrated to bind with nanomolar affinity (  相似文献   

16.
A robust bacterial display methodology was developed that allows the rapid isolation of peptides that bind to arbitrarily selected targets with high affinity. To demonstrate the utility of this approach, a large library (5 x 10(10) clones) was constructed composed of random 15-mer peptide insertions constrained within a flexible, surface exposed loop of the Escherichia coli outer membrane protein A (OmpA). The library was screened for binding to five unrelated proteins, including targets previously used in phage display selections: human serum albumin, anti-T7 epitope mAb, human C-reactive protein, HIV-1 GP120 and streptavidin. Two to four rounds of enrichment (2-4 days) were sufficient to enrich peptide ligands having high affinity for each of the target proteins. Strong amino acid consensus sequences were apparent for each of the targets tested, with up to seven consensus residues. Isolated peptide ligands remained functional when expressed as insertional fusions within a monomeric fluorescent protein. This bacterial display methodology provides an efficient process for identifying peptide affinity reagents and should be useful in a variety of molecular recognition applications.  相似文献   

17.
The high-resolution structure of several specific DNA-bindingproteins have been determined, and they display a common structuralmotif which mediates their binding to DNA. This motif consistsof two -helices connected by a sharp turn, and its amino acidsequence has several distinguishing features. A computer searchof the proteins coded by the genome of bacteriophage T7 hasbeen performed in an attempt to identify those proteins thatpotentially contain this motif. Eight proteins were found tohave regions similar to that of the motif. Of these, three arerelatively small, have no known function and are good candidatesfor being DNA-binding regulatory proteins. The methods describeduse commonly available computer programs and databases, andare therefore easy to implement.  相似文献   

18.
CD30, the so-called Reed-Sternberg antigen, constitutes a promising cell-specific target for the treatment of Hodgkin's lymphoma. Starting from the previously characterized cognate HRS3 mouse monoclonal antibody, the bacterially produced functional Fab fragment was humanized by grafting the CDRs from the mouse antibody framework on to human immunoglobulin consensus sequences. This procedure led to a 10-fold decreased antigen affinity, which surprisingly was found to be mainly due to the VH domain. To improve the antigen-binding activity, an in vitro evolution strategy was employed, wherein random mutations were introduced into the humanized VH domain by means of error-prone PCR, followed by a filter sandwich Escherichia coli colony screening assay for functional Fab fragments using a recombinant extracellular domain of the CD30 antigen. After three cycles of in vitro affinity maturation, the optimized Fab fragment huHRS3-VH-EP3/1 was identified, which carried four exchanged residues within or close to the VH CDRs and had an affinity that was almost identical with that of the murine HRS3 Fab fragment. The resulting humanized Fab fragment was fully functional with respect to CD30 binding both in ELISA with the recombinant antigen and in FACS experiments with CD30-positive L540CY cells. In the light of the previously successful clinical application of an alphaCD30 x alphaCD16 bispecific mouse quadroma antibody derived from HRS3, the humanized Fab fragment comprises an important step towards the construction of a fully recombinant therapeutic agent. The combination of random mutagenesis and colony filter screening assay that was successfully applied here should be generally useful as a method for the rapid functional optimization of humanized antibody fragments.  相似文献   

19.
Yeast display is a powerful tool for increasing the affinity and thermal stability of scFv antibodies through directed evolution. Mammalian calmodulin (CaM) is a highly conserved signaling protein that undergoes structural changes upon Ca(2+) binding. In an attempt to generate conformation-specific antibodies for proteomic applications, a selection against CaM was undertaken. Flow cytometry-based screening strategies to isolate easily scFv recognizing CaM in either the Ca(2+)-bound (Ca(2+)-CaM) or Ca(2+)-free (apo-CaM) states are presented. Both full-length scFv and single-domain VH only clones were isolated. One scFv clone having very high affinity (K(d) = 0.8 nM) and specificity (>1000-fold) for Ca(2+)-CaM was obtained from de novo selections. Subsequent directed evolution allowed the development of antibodies with higher affinity (K(d) = 1 nM) and specificity (>300-fold) for apo-CaM from a parental single-domain clone with both a modest affinity and specificity for that particular isoform. CaM-binding activity was unexpectedly lost upon conversion of both conformation-specific clones into soluble fragments. However, these results demonstrate that conformation-specific antibodies can be quickly and easily isolated by directed evolution using the yeast display platform.  相似文献   

20.
One of the pivotal steps in aptamer selection is the amplification of target-specific oligonucleotides by thermophilic DNA polymerases; it can be a challenging task if nucleic acids possessing modified nucleotides are to be amplified. Hence, the identification of compatible DNA polymerase and modified nucleotide pairs is necessary for effective selection of aptamers with unnatural nucleotides. We present an in-depth study of using 5-indolyl-AA-dUTP (TAdUTP) to generate oligonucleotide libraries for aptamer selection. We found that, among the eight studied DNA polymerases, only Vent(exo-) and KOD XL are capable of adapting TAdUTP, and that replacing dTTP did not have a significant effect on the productivity of KOD XL. We demonstrated that water-in-oil emulsion PCR is suitable for the generation of aptamer libraries of modified nucleotides. Finally, high-throughput sequence analysis showed that neither the error rate nor the PCR bias was significantly affected by using TAdUTP. In summary, we propose that KOD XL and TAdUTP could be effectively used for aptamer selection without distorting the sequence space of random oligonucleotide libraries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号