首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The ischemia–reperfusion injury (IRI) of rat kidneys is used as a model of acute kidney injury. Salt-sensitive hypertension occurs in rats after IRI, and the distal nephrons play important roles in the development of this condition. We investigated the role of the mineralocorticoid receptor (MR) in the progression of IRI-induced salt-sensitive hypertension in rats. Fourteen days after right-side nephrectomy, IRI was induced by clamping the left renal artery, with sham surgery performed as a control. IRI rats were provided with normal water or water with 1.0% NaCl (IRI/NaCl), or they were implanted with an osmotic mini-pump to infuse vehicle or aldosterone (IRI/Aldo). Esaxerenone, a non-steroidal MR blocker (MRB), was administered to IRI/NaCl and IRI/Aldo rats for 6 weeks. MR expression increased by day 7 post-IRI. Blood pressure and urinary protein excretion increased in IRI/NaCl and IRI/Aldo rats over the 6-week period, but these effects were negated by MRB administration. The MRB attenuated the expression of the gamma-epithelial sodium channel (ENaC) and renal damage. The ENaC inhibitor, amiloride, ameliorated hypertension and renal damage in IRI/NaCl and IRI/Aldo rats. Our findings thus showed that MR upregulation may play a pivotal role in ENaC-mediated sodium uptake in rats after IRI, resulting in the development of salt-sensitive hypertension in response to salt overload or the activation of the renin–angiotensin–aldosterone system.  相似文献   

3.
Ischemia/reperfusion injury (IRI) is a complex pathophysiological process characterized by blood circulation disorder caused by various factors, such as traumatic shock, surgery, organ transplantation, and thrombus. Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. The kidney is a highly perfused organ, sensitive to ischemia and reperfusion injury, and the incidence of renal IRI has high morbidity and mortality. Several studies showed that infiltration of inflammatory cells, apoptosis, and angiogenesis are important mechanisms involved in renal IRI. Despite advances in research, effective therapies for renal IRI are lacking. Recently it has been demonstrated the role of KYP2047, a selective inhibitor of prolyl oligopeptidase (POP), in the regulation of inflammation, apoptosis, and angiogenesis. Thus, this research focused on the role of POP in kidney ischemia/reperfusion (KI/R). An in vivo model of KI/R was performed and mice were subjected to KYP2047 treatment (intraperitoneal, 0.5, 1 and 5 mg/kg). Histological analysis, Masson’s trichrome and periodic acid shift (PAS) staining, immunohistochemical and Western blots analysis, real-time PCR (RT-PCR) and ELISA were performed on kidney samples. Moreover, serum creatinine and blood urea nitrogen (BUN) were quantified. POP-inhibition by KYP2047 treatment, only at the doses of 1 and 5 mg/kg, significantly reduced renal injury and collagen amount, regulated inflammation through canonical and non-canonical NF-κB pathway, and restored renal function. Moreover, KYP2047 modulated angiogenesis markers, such as TGF-β and VEGF, also slowing down apoptosis. Interestingly, treatment with KYP2047 modulated PP2A activity. Thus, these findings clarified the role of POP inhibition in AKI, also offering novel therapeutic target for renal injury after KI/R.  相似文献   

4.
Increasing evidence suggests natriuretic peptides (NPs) coordinate interorgan metabolic crosstalk. We recently reported exogenous ANP treatment ameliorated systemic insulin resistance by inducing adipose tissue browning and attenuating hepatic steatosis in diet-induced obesity (DIO). We herein investigated whether ANP treatment also ameliorates myocardial insulin resistance, leading to cardioprotection during ischemia–reperfusion injury (IRI) in DIO. Mice fed a high-fat diet (HFD) or normal-fat diet for 13 weeks were treated with or without ANP infusion subcutaneously for another 3 weeks. Left ventricular BNP expression was substantially reduced in HFD hearts. Intraperitoneal-insulin-administration-induced Akt phosphorylation was impaired in HFD hearts, which was restored by ANP treatment, suggesting that ANP treatment ameliorated myocardial insulin resistance. After ischemia–reperfusion using the Langendorff model, HFD impaired cardiac functional recovery with a corresponding increased infarct size. However, ANP treatment improved functional recovery and reduced injury while restoring impaired IRI-induced Akt phosphorylation in HFD hearts. Myocardial ultrastructural analyses showed increased peri-mitochondrial lipid droplets with concomitantly decreased ATGL and HSL phosphorylation levels in ANP-treated HFD, suggesting that ANP protects mitochondria from lipid overload by trapping lipids. Accordingly, ANP treatment attenuated mitochondria cristae disruption after IRI in HFD hearts. In summary, exogenous ANP treatment ameliorates myocardial insulin resistance and protects against IRI associated with mitochondrial ultrastructure modifications in DIO. Replenishing biologically active NPs substantially affects HFD hearts in which endogenous NP production is impaired.  相似文献   

5.
Nanomedicine is currently showing great promise for new methods of diagnosing and treating many diseases, particularly in kidney disease and transplantation. The unique properties of nanoparticles arise from the diversity of size effects, used to design targeted nanoparticles for specific cells or tissues, taking renal clearance and tubular secretion mechanisms into account. The design of surface particles on nanoparticles offers a wide range of possibilities, among which antibodies play an important role. Nanoparticles find applications in encapsulated drug delivery systems containing immunosuppressants and other drugs, in imaging, gene therapies and many other branches of medicine. They have the potential to revolutionize kidney transplantation by reducing and preventing ischemia–reperfusion injury, more efficiently delivering drugs to the graft site while avoiding systemic effects, accurately localizing and visualising the diseased site and enabling continuous monitoring of graft function. So far, there are known nanoparticles with no toxic effects on human tissue, although further studies are still needed to confirm their safety.  相似文献   

6.
TRPA1, a nonselective cation channel, is expressed in sensory afferent that innervates peripheral targets. Neuronal TRPA1 can promote tissue repair, remove harmful stimuli and induce protective responses via the release of neuropeptides after the activation of the channel by chemical, exogenous, or endogenous irritants in the injured tissue. However, chronic inflammation after repeated noxious stimuli may result in the development of several diseases. In addition to sensory neurons, TRPA1, activated by inflammatory agents from some non-neuronal cells in the injured area or disease, might promote or protect disease progression. Therefore, TRPA1 works as a molecular sentinel of tissue damage or as an inflammation gatekeeper. Most kidney damage cases are associated with inflammation. In this review, we summarised the role of TRPA1 in neurogenic or non-neurogenic inflammation and in kidney disease, especially the non-neuronal TRPA1. In in vivo animal studies, TRPA1 prevented sepsis-induced or Ang-II-induced and ischemia-reperfusion renal injury by maintaining mitochondrial haemostasis or via the downregulation of macrophage-mediated inflammation, respectively. Renal tubular epithelial TRPA1 acts as an oxidative stress sensor to mediate hypoxia–reoxygenation injury in vitro and ischaemia–reperfusion-induced kidney injury in vivo through MAPKs/NF-kB signalling. Acute kidney injury (AKI) patients with high renal tubular TRPA1 expression had low complete renal function recovery. In renal disease, TPRA1 plays different roles in different cell types accordingly. These findings depict the important role of TRPA1 and warrant further investigation.  相似文献   

7.
Recent knowledge concerning the role of non-coding RNAs (ncRNAs) in myocardial ischemia/reperfusion (I/R) injury provides new insight into their possible roles as specific biomarkers for early diagnosis, prognosis, and treatment. MicroRNAs (miRNAs) have fewer than 200 nucleotides, while long ncRNAs (lncRNAs) have more than 200 nucleotides. The three types of ncRNAs (miRNAs, lncRNAs, and circRNAs) act as signaling molecules strongly involved in cardiovascular disorders (CVD). I/R injury of the heart is the main CVD correlated with acute myocardial infarction (AMI), cardiac surgery, and transplantation. The expression levels of many ncRNAs and miRNAs are highly modified in the plasma of MI patients, and thus they have the potential to diagnose and treat MI. Cardiomyocyte and endothelial cell death is the major trigger for myocardial ischemia–reperfusion syndrome (MIRS). The cardioprotective effect of inflammasome activation in MIRS and the therapeutics targeting the reparative response could prevent progressive post-infarction heart failure. Moreover, the pharmacological and genetic modulation of these ncRNAs has the therapeutic potential to improve clinical outcomes in AMI patients.  相似文献   

8.
Ischemia-induced mitochondrial dysfunction and ATP depletion in the kidney result in disruption of primary functions and acute injury of the kidney. This study tested whether γ-tocotrienol (GTT), a member of the vitamin E family, protects mitochondrial function, reduces ATP deficits, and improves renal functions and survival after ischemia/reperfusion injury. Vehicle or GTT (200 mg/kg) were administered to mice 12 h before bilateral kidney ischemia, and endpoints were assessed at different timepoints of reperfusion. GTT treatment reduced decreases in state 3 respiration and accelerated recovery of this function after ischemia. GTT prevented decreases in activities of complexes I and III of the respiratory chain, and blocked ischemia-induced decreases in F0F1-ATPase activity and ATP content in renal cortical tissue. GTT improved renal morphology at 72 h after ischemia, reduced numbers of necrotic proximal tubular and inflammatory cells, and enhanced tubular regeneration. GTT treatment ameliorated increases in plasma creatinine levels and accelerated recovery of creatinine levels after ischemia. Lastly, 89% of mice receiving GTT and 70% of those receiving vehicle survived ischemia. Conclusions: Our data show novel observations that GTT administration improves mitochondrial respiration, prevents ATP deficits, promotes tubular regeneration, ameliorates decreases in renal functions, and increases survival after acute kidney injury in mice.  相似文献   

9.
In this review, we provide recent data on the role of mTOR kinase in the brain under physiological conditions and after damage, with a particular focus on cerebral ischemia. We cover the upstream and downstream pathways that regulate the activation state of mTOR complexes. Furthermore, we summarize recent advances in our understanding of mTORC1 and mTORC2 status in ischemia–hypoxia at tissue and cellular levels and analyze the existing evidence related to two types of neural cells, namely glia and neurons. Finally, we discuss the potential use of mTORC1 and mTORC2 as therapeutic targets after stroke.  相似文献   

10.
The potential therapeutic effect of extracellular vesicles (EVs) that are derived from human liver stem cells (HLSCs) has been tested in an in vivo model of renal ischemia and reperfusion injury (IRI), that induce the development of chronic kidney disease (CKD). EVs were administered intravenously immediately after the IRI and three days later, then their effect was tested at different time points to evaluate how EV-treatment might interfere with fibrosis development. In IRI-mice that were sacrificed two months after the injury, EV- treatment decreased the development of interstitial fibrosis at the histological and molecular levels. Furthermore, the expression levels of pro-inflammatory genes and of epithelial–mesenchymal transition (EMT) genes were significantly reverted by EV-treatment. In IRI-mice that were sacrificed at early time points (two and three days after the injury), functional and histological analyses showed that EV-treatment induced an amelioration of the acute kidney injury (AKI) that was induced by IRI. Interestingly, at the molecular level, a reduction of pro-fibrotic and EMT-genes in sacrificed IRI-mice was observed at days two and three after the injury. These data indicate that in renal IRI, treatment with HLSC-derived EVs improves AKI and interferes with the development of subsequent CKD by modulating the genes that are involved in fibrosis and EMT.  相似文献   

11.
Chronic kidney disease (CKD), as one of the main complications of many autoimmune diseases, is difficult to cure, which places a huge burden on patients’ health and the economy and poses a great threat to human health. At present, the mainstream view is that autoimmune diseases are a series of diseases and complications caused by immune cell dysfunction leading to the attack of an organism’s tissues by its immune cells. The kidney is the organ most seriously affected by autoimmune diseases as it has a very close relationship with immune cells. With the development of an in-depth understanding of cell metabolism in recent years, an increasing number of scientists have discovered the metabolic changes in immune cells in the process of disease development, and we have a clearer understanding of the characteristics of the metabolic changes in immune cells. This suggests that the regulation of immune cell metabolism provides a new direction for the treatment and prevention of kidney damage caused by autoimmune diseases. Macrophages are important immune cells and are a double-edged sword in the repair process of kidney injury. Although they can repair damaged kidney tissue, over-repair will also lead to the loss of renal structural reconstruction function. In this review, from the perspective of metabolism, the metabolic characteristics of macrophages in the process of renal injury induced by autoimmune diseases are described, and the metabolites that can regulate the function of macrophages are summarized. We believe that treating macrophage metabolism as a target can provide new ideas for the treatment of the renal injury caused by autoimmune diseases.  相似文献   

12.
Successful uterus transplantation, a potential treatment method for women suffering from absolute uterine infertility, is negatively affected by ischemia–reperfusion injury (IRI). The aim of this study is to investigate the protective effect of relaxin (RLX) or/and erythropoietin (EPO) on experimental uterus IRI. Eighty rats, randomly assigned into eight groups (n = 10/group), were pretreated with either saline, 5 μg/kg human relaxin-2, 4000 IU/kg recombinant human erythropoietin or their combination. Ischemia was achieved by clamping the aorta and ovarian arteries for 60 min, following 120 min of reperfusion and tissue sampling. For sham animals, clamping was omitted during surgery. There were no differences in tissue histological score, malondialdehyde (MDA) and superoxide dismutase (SOD) levels, myeloperoxidase (MPO) and TUNEL-positive cell count between all sham-operated rats. Pretreatment with RLX preserved normal tissue morphology, reduced MDA levels, MPO and TUNEL-positive cell count, preserved SOD activity and upregulated NICD and HES1 gene expression when compared to the control group. Pretreatment with EPO reduced MDA levels. In conclusion, pretreatment with RLX, EPO or a combination of both EPO and RLX significantly alleviates uterine tissue damage caused by IRI.  相似文献   

13.
Receptor-interacting protein kinase 3 (RIP3) is a convergence point of multiple signalling pathways, including necroptosis, inflammation and oxidative stress; however, it is completely unknown whether it underlies acute myocardial ischemia/reperfusion (I/R) injury. Langendorff-perfused rat hearts subjected to 30 min ischemia followed by 10 min reperfusion exhibited compromised cardiac function which was not abrogated by pharmacological intervention of RIP3 inhibition. An immunoblotting analysis revealed that the detrimental effects of I/R were unlikely mediated by necroptotic cell death, since neither the canonical RIP3–MLKL pathway (mixed lineage kinase-like pseudokinase) nor the proposed non-canonical molecular axes involving CaMKIIδ–mPTP (calcium/calmodulin-dependent protein kinase IIδ–mitochondrial permeability transition pore), PGAM5–Drp1 (phosphoglycerate mutase 5–dynamin-related protein 1) and JNK–BNIP3 (c-Jun N-terminal kinase–BCL2-interacting protein 3) were activated. Similarly, we found no evidence of the involvement of NLRP3 inflammasome signalling (NOD-, LRR- and pyrin domain-containing protein 3) in such injury. RIP3 inhibition prevented the plasma membrane rupture and delayed mPTP opening which was associated with the modulation of xanthin oxidase (XO) and manganese superoxide dismutase (MnSOD). Taken together, this is the first study indicating that RIP3 regulates early reperfusion injury via oxidative stress- and mitochondrial activity-related effects, rather than cell loss due to necroptosis.  相似文献   

14.
Ischemic heart disease is the major cause of mortality and morbidity worldwide. Early reperfusion after acute myocardial ischemia has reduced short-term mortality, but it is also responsible for additional myocardial damage, which in the long run favors adverse cardiac remodeling and heart failure evolution. A growing body of experimental and clinical evidence show that the mitochondrion is an essential end effector of ischemia/reperfusion injury and a major trigger of cell death in the acute ischemic phase (up to 48–72 h after the insult), the subacute phase (from 72 h to 7–10 days) and chronic stage (from 10–14 days to one month after the insult). As such, in recent years scientific efforts have focused on mitochondria as a target for cardioprotective strategies in ischemic heart disease and cardiomyopathy. The present review discusses recent advances in this field, with special emphasis on the emerging role of the biologically active thyroid hormone triiodothyronine (T3).  相似文献   

15.
Background: The connection between uric acid (UA) and renal impairment is well known due to the urate capacity to precipitate within the tubules or extra-renal system. Emerging studies allege a new hypothesis concerning UA and renal impairment involving a pro-inflammatory status, endothelial dysfunction, and excessive activation of renin–angiotensin–aldosterone system (RAAS). Additionally, hyperuricemia associated with oxidative stress is incriminated in DNA damage, oxidations, inflammatory cytokine production, and even cell apoptosis. There is also increasing evidence regarding the association of hyperuricemia with chronic kidney disease (CKD), cardiovascular disease, and metabolic syndrome or diabetes mellitus. Conclusions: Important aspects need to be clarified regarding hyperuricemia predisposition to oxidative stress and its effects in order to initiate the proper treatment to determine the optimal maintenance of UA level, improving patients’ long-term prognosis and their quality of life.  相似文献   

16.
Skin flaps are necessary in plastic and reconstructive surgery for the removal of skin cancer, wounds, and ulcers. A skin flap is a portion of skin with its own blood supply that is partially separated from its original position and moved from one place to another. The use of skin flaps is often accompanied by cell necrosis or apoptosis due to ischemia–reperfusion (I/R) injury. Proinflammatory cytokines, such as nuclear factor kappa B (NF-κB), inhibitor of kappa B (IκB), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and oxygen free radicals are known causative agents of cell necrosis and apoptosis. To prevent I/R injury, many investigators have suggested the inhibition of proinflammatory cytokines, stem-cell therapies, and drug-based therapies. Ischemic preconditioning (IPC) is a strategy used to prevent I/R injury. IPC is an experimental technique that uses short-term repetition of occlusion and reperfusion to adapt the area to the loss of blood supply. IPC can prevent I/R injury by inhibiting proinflammatory cytokine activity. Various stem cell applications have been studied to facilitate flap survival and promote angiogenesis and vascularization in animal models. The possibility of constructing tissue engineered flaps has also been investigated. Although numerous animal studies have been published, clinical data with regard to IPC in flap reconstruction have never been reported. In this study, we present various experimental skin flap methods, IPC methods, and methods utilizing molecular factors associated with IPC.  相似文献   

17.
Opioids are considered the oldest drugs known by humans and have been used for sedation and pain relief for several centuries. Nowadays, endogenous opioid peptides are divided into four families: enkephalins, dynorphins, endorphins, and nociceptin/orphanin FQ. They exert their action through the opioid receptors (ORs), transmembrane proteins belonging to the super-family of G-protein-coupled receptors, and are expressed throughout the body; the receptors are the δ opioid receptor (DOR), μ opioid receptor (MOR), κ opioid receptor (KOR), and nociceptin/orphanin FQ receptor (NOP). Endogenous opioids are mainly studied in the central nervous system (CNS), but their role has been investigated in other organs, both in physiological and in pathological conditions. Here, we revise their role in stem cell (SC) biology, since these cells are a subject of great scientific interest due to their peculiar features and their involvement in cell-based therapies in regenerative medicine. In particular, we focus on endogenous opioids’ ability to modulate SC proliferation, stress response (to oxidative stress, starvation, or damage following ischemia–reperfusion), and differentiation towards different lineages, such as neurogenesis, vasculogenesis, and cardiogenesis.  相似文献   

18.
Acute kidney injury (AKI) is a public health problem worldwide. Sirtuins are a family of seven NAD+-dependent deacylases, Overexpression of Sirtuin 1, 3, and 5 protect against AKI. However, the role of Sirtuin 7 (Sirt7) in AKI is not known. Here, we analyzed how Sirt7 deficient mice (KO-Sirt7) were affected by AKI. As expected, wild-type and Sirt7 heterozygotes mice that underwent renal ischemia/reperfusion (IR) exhibited the characteristic hallmarks of AKI: renal dysfunction, tubular damage, albuminuria, increased oxidative stress, and renal inflammation. In contrast, the KO-Sirt7+IR mice were protected from AKI, exhibiting lesser albuminuria and reduction in urinary biomarkers of tubular damage, despite similar renal dysfunction. The renoprotection in the Sirt7-KO+IR group was associated with reduced kidney weight, minor expression of inflammatory cytokines and less renal infiltration of inflammatory cells. This anti-inflammatory effect was related to diminished p65 expression and in its active phosphorylation, as well as by a reduction in p65 nuclear translocation. Sirt7 deficient mice are protected from AKI, suggesting that this histone deacetylase promotes tubular damage and renal inflammation. Therefore, our findings indicate that Sirt7 inhibitors may be an attractive therapeutic target to reduce NFκB signaling.  相似文献   

19.
Acute kidney injury due to renal ischemia-reperfusion injury (IRI) may lead to chronic or end stage kidney disease. A greater understanding of the cellular mechanisms underlying IRI are required to develop therapeutic options aimed at limiting or reversing damage from IRI. Prior work has shown that deletion of the α subunit of the epithelial Na+ channel (ENaC) in endothelial cells protects from IRI by increasing the availability of nitric oxide. While canonical ENaCs consist of an α, β, and γ subunit, there is evidence of non-canonical ENaC expression in endothelial cells involving the α subunit. We therefore tested whether the deletion of the γ subunit of ENaC also protects mice from IRI to differentiate between these channel configurations. Mice with endothelial-specific deletion of the γ subunit and control littermates were subjected to unilateral renal artery occlusion followed by 48 h of reperfusion. No significant difference was noted in injury between the two groups as assessed by serum creatinine and blood urea nitrogen, levels of specific kidney injury markers, and histological examination. While deletion of the γ subunit did not alter infiltration of immune cells or cytokine message, it was associated with an increase in levels of total and phosphorylated endothelial nitric oxide synthase (eNOS) in the injured kidneys. Our studies demonstrate that even though deletion of the γ subunit of ENaC may allow for greater activation of eNOS, this is not sufficient to prevent IRI, suggesting the protective effects of α subunit deletion may be due, in part, to other mechanisms.  相似文献   

20.
One-quarter of patients with acute decompensated heart failure (ADHF) experience acute kidney injury (AKI)—an abrupt reduction or loss of kidney function associated with increased long-term mortality. There is a critical need to identify early and real-time markers of AKI in ADHF; however, to date, no protein biomarkers have exhibited sufficient diagnostic or prognostic performance for widespread clinical uptake. We aimed to identify novel protein biomarkers of AKI associated with ADHF by quantifying changes in protein abundance in the kidneys that occur during ADHF development and recovery in an ovine model. Relative quantitative protein profiling was performed using sequential window acquisition of all theoretical fragment ion spectra–mass spectrometry (SWATH–MS) in kidney cortices from control sheep (n = 5), sheep with established rapid-pacing-induced ADHF (n = 8), and sheep after ~4 weeks recovery from ADHF (n = 7). Of the 790 proteins quantified, we identified 17 candidate kidney injury markers in ADHF, 1 potential kidney marker of ADHF recovery, and 2 potential markers of long-term renal impairment (differential abundance between groups of 1.2–2.6-fold, adjusted p < 0.05). Among these 20 candidate protein markers of kidney injury were 6 candidates supported by existing evidence and 14 novel candidates not previously implicated in AKI. Proteins of differential abundance were enriched in pro-inflammatory signalling pathways: glycoprotein VI (activated during ADHF development; adjusted p < 0.01) and acute phase response (repressed during recovery from ADHF; adjusted p < 0.01). New biomarkers for the early detection of AKI in ADHF may help us to evaluate effective treatment strategies to prevent mortality and improve outcomes for patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号