首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth of the axial and appendicular skeleton depends on endochondral ossification, which is controlled by tightly regulated cell–cell interactions in the developing growth plates. Previous studies have uncovered an important role of a disintegrin and metalloprotease 17 (ADAM17) in the normal development of the mineralized zone of hypertrophic chondrocytes during endochondral ossification. ADAM17 regulates EGF-receptor signaling by cleaving EGFR-ligands such as TGFα from their membrane-anchored precursor. The activity of ADAM17 is controlled by two regulatory binding partners, the inactive Rhomboids 1 and 2 (iRhom1, 2), raising questions about their role in endochondral ossification. To address this question, we generated mice lacking iRhom2 (iR2−/−) with floxed alleles of iRhom1 that were specifically deleted in chondrocytes by Col2a1-Cre (iR1∆Ch). The resulting iR2−/−iR1∆Ch mice had retarded bone growth compared to iR2−/− mice, caused by a significantly expanded zone of hypertrophic mineralizing chondrocytes in the growth plate. Primary iR2−/−iR1∆Ch chondrocytes had strongly reduced shedding of TGFα and other ADAM17-dependent EGFR-ligands. The enlarged zone of mineralized hypertrophic chondrocytes in iR2−/−iR1∆Ch mice closely resembled the abnormal growth plate in A17∆Ch mice and was similar to growth plates in Tgfα−/− mice or mice with EGFR mutations. These data support a model in which iRhom1 and 2 regulate bone growth by controlling the ADAM17/TGFα/EGFR signaling axis during endochondral ossification.  相似文献   

2.
3.
Mitochondrial translation is a unique relic of the symbiotic origin of the organelle. Alterations of its components cause a number of severe human diseases. Hereby we report a study of mice devoid of Mettl15 mitochondrial 12S rRNA methyltransferase, responsible for the formation of m4C839 residue (human numbering). Homozygous Mettl15−/− mice appeared to be viable in contrast to other mitochondrial rRNA methyltransferase knockouts reported earlier. The phenotype of Mettl15−/− mice is much milder than that of other mutants of mitochondrial translation apparatus. In agreement with the results obtained earlier for cell cultures with an inactivated Mettl15 gene, we observed accumulation of the RbfA factor, normally associated with the precursor of the 28S subunit, in the 55S mitochondrial ribosome fraction of knockout mice. A lack of Mettl15 leads to a lower blood glucose level after physical exercise relative to that of the wild-type mice. Mettl15−/− mice demonstrated suboptimal muscle performance and lower levels of Cox3 protein synthesized by mitoribosomes in the oxidative soleus muscles. Additionally, we detected decreased learning capabilities in the Mettl15−/− knockout mice in the tests with both positive and negative reinforcement. Such properties make Mettl15−/− knockout mice a suitable model for mild mitochondriopathies.  相似文献   

4.
5.
Glycogen storage disease type IX (GSD-IX) constitutes nearly a quarter of all GSDs. This ketotic form of GSD is caused by mutations in phosphorylase kinase (PhK), which is composed of four subunits (α, β, γ, δ). PhK is required for the activation of the liver isoform of glycogen phosphorylase (PYGL), which generates free glucose-1-phosphate monomers to be used as energy via cleavage of the α -(1,4) glycosidic linkages in glycogen chains. Mutations in any of the PhK subunits can negatively affect the regulatory and catalytic activity of PhK during glycogenolysis. To understand the pathogenesis of GSD-IX-beta, we characterized a newly created PHKB knockout (Phkb−/−) mouse model. In this study, we assessed fasting blood glucose and ketone levels, serum metabolite concentrations, glycogen phosphorylase activity, and gene expression of gluconeogenic genes and fibrotic genes. Phkb−/− mice displayed hepatomegaly with lower fasting blood glucose concentrations. Phkb−/− mice showed partial liver glycogen phosphorylase activity and increased sensitivity to pyruvate, indicative of partial glycogenolytic activity and upregulation of gluconeogenesis. Additionally, gene expression analysis demonstrated increased lipid metabolism in Phkb−/− mice. Gene expression analysis and liver histology in the livers of old Phkb−/− mice (>40 weeks) showed minimal profibrogenic features when analyzed with age-matched wild-type (WT) mice. Collectively, the Phkb−/− mouse recapitulates mild clinical features in patients with GSD-IX-beta. Metabolic and molecular analysis confirmed that Phkb−/− mice were capable of sustaining energy homeostasis during prolonged fasting by using partial glycogenolysis, increased gluconeogenesis, and potentially fatty acid oxidation in the liver.  相似文献   

6.
7.
Romosozumab, a humanized monoclonal antibody specific for sclerostin (SOST), has been approved for treatment of postmenopausal women with osteoporosis at a high risk for fracture. Previous work in sclerostin global knockout (Sost−/−) mice indicated alterations in immune cell development in the bone marrow (BM), which could be a possible side effect in romosozumab-treated patients. Here, we examined the effects of short-term sclerostin depletion in the BM on hematopoiesis in young mice receiving sclerostin antibody (Scl-Ab) treatment for 6 weeks, and the effects of long-term Sost deficiency on wild-type (WT) long-term hematopoietic stem cells transplanted into older cohorts of Sost−/− mice. Our analyses revealed an increased frequency of granulocytes in the BM of Scl-Ab-treated mice and WT→Sost−/− chimeras, indicating myeloid-biased differentiation in Sost-deficient BM microenvironments. This myeloid bias extended to extramedullary hematopoiesis in the spleen and was correlated with an increase in inflammatory cytokines TNFα, IL-1α, and MCP-1 in Sost−/− BM serum. Additionally, we observed alterations in erythrocyte differentiation in the BM and spleen of Sost−/− mice. Taken together, our current study indicates novel roles for Sost in the regulation of myelopoiesis and control of inflammation in the BM.  相似文献   

8.
9.
10.
(1) Background: The c-Jun-NH2-terminal protein kinase (JNK) is a mitogen-activated protein kinase involved in regulating physiological processes in the central nervous system. However, the dual genetic deletion of Mkk4 and Mkk7 (upstream activators of JNK) in adult mice is not reported. The aim of this study was to induce the genetic deletion of Mkk4/Mkk7 in adult mice and analyze their effect in hippocampal neurogenesis. (2) Methods: To achieve this goal, Actin-CreERT2 (Cre+/), Mkk4flox/flox, Mkk7flox/flox mice were created. The administration of tamoxifen in these 2-month-old mice induced the gene deletion (Actin-CreERT2 (Cre+/−), Mkk4∆/∆, Mkk7∆/∆ genotype), which was verified by PCR, Western blot, and immunohistochemistry techniques. (3) Results: The levels of MKK4/MKK7 at 7 and 14 days after tamoxifen administration were not eliminated totally in CNS, unlike what happens in the liver and heart. These data could be correlated with the high levels of these proteins in CNS. In the hippocampus, the deletion of Mkk4/Mkk7 induced a misalignment position of immature hippocampal neurons together with alterations in their dendritic architecture pattern and maturation process jointly to the diminution of JNK phosphorylation. (4) Conclusion: All these data supported that the MKK4/MKK7–JNK pathway has a role in adult neurogenic activity.  相似文献   

11.
Vanishing white matter (VWM) disease is a genetic leukodystrophy leading to severe neurological disease and early death. VWM is caused by bi-allelic mutations in any of the five genes encoding the subunits of the eukaryotic translation factor 2B (EIF2B). Previous studies have attempted to investigate the molecular mechanism of VWN by constructing models for each subunit of EIF2B that causes VWM disease. The underlying molecular mechanisms of the way in which mutations in EIF2B3 result in VWM are largely unknown. Based on our recent results, we generated an eif2b3 knockout (eif2b3−/−) zebrafish model and performed quantitative proteomic analysis between the wild-type (WT) and eif2b3−/− zebrafish, and identified 25 differentially expressed proteins. Four proteins were significantly upregulated, and 21 proteins were significantly downregulated in eif2b3−/− zebrafish compared to WT. Lon protease and the neutral amino acid transporter SLC1A4 were significantly increased in eif2b3−/− zebrafish, and crystallin proteins were significantly decreased. The differential expression of proteins was confirmed by the evaluation of mRNA levels in eif2b3−/− zebrafish, using whole-mount in situ hybridization analysis. This study identified proteins which candidates as key regulators of the progression of VWN disease, using quantitative proteomic analysis in the first EIF2B3 animal model of VWN disease.  相似文献   

12.
Progranulin (PGRN) is a secreted glycoprotein that regulates numerous cellular processes. The role of PGRN as a regulator of lysosomes has recently received attention. The purpose of this study was to characterize the retinal phenotype in mature PGRN knockout (Grn−/−) mice. The a-wave amplitude of scotopic electroretinogram and outer nuclear thickness were significantly reduced at 6 months of age in Grn−/− mice compared to wild-type (Grn+/+) mice. In Grn−/− mice, retinal microglial cells accumulated on the retinal pigment epithelium (RPE) apical layer, and the number of infiltrated microglia and white fundus lesions between 2 and 6 months of age showed a close affinity. In Grn+/+ mice, PGRN was located in the retina, while the strongest PGRN signals were detected in the RPE-choroid. The different effects of PGRN deficiency on the expression of lysosomal proteins between the retina and RPE-choroid were demonstrated. Our data suggest that the subretinal translocation of microglia is a characteristic phenotype in the retina of mature PGRN knockout mice. The different effects of PGRN deficiency on the expression of lysosomal proteins between the retina and RPE-choroid might modulate microglial dynamics in PGRN knockout mice.  相似文献   

13.
This study investigates whether reduced optic atrophy 1 (Opa1) level promotes apoptosis and retinal vascular lesions associated with diabetic retinopathy (DR). Four groups of mice: wild type (WT) control mice, streptozotocin (STZ)-induced diabetic mice, Opa1+/− mice, and diabetic Opa1+/− mice were used in this study. 16 weeks after diabetes onset, retinas were assessed for Opa1 and Bax levels by Western blot analysis, and retinal networks were examined for acellular capillaries (AC) and pericyte loss (PL). Apoptotic cells were detected in retinal capillaries using TUNEL assay, and caspase-3 activity was assessed using fluorometric analysis. Opa1 expression was significantly downregulated in retinas of diabetic and Opa1+/− mice compared with those of WT mice. Inducing diabetes further decreased Opa1 expression in retinas of Opa1+/− mice. Increased cytochrome c release concomitant with increased level of pro-apoptotic Bax and elevated caspase-3 activity were observed in retinas of diabetic and Opa1+/− mice; the number of TUNEL-positive cells and AC/PL was also significantly increased. An additional decrease in the Opa1 level in retinas of diabetic Opa1+/− mice exacerbated the development of apoptotic cells and AC/PL compared with those of diabetic mice. Diabetes-induced Opa1 downregulation contributes, at least in part, to the development of retinal vascular lesions characteristic of DR.  相似文献   

14.
SHANK3 encodes a scaffold protein involved in postsynaptic receptor density in glutamatergic synapses, including those in the parvalbumin (PV)+ inhibitory neurons—the key players in the generation of sensory gamma oscillations, such as 40-Hz auditory steady-state response (ASSR). However, 40-Hz ASSR was not studied in relation to SHANK3 functioning. Here, we present a 15-year-old girl (SH01) with previously unreported duplication of the first seven exons of the SHANK3 gene (22q13.33). SH01’s electroencephalogram (EEG) during 40-Hz click trains of 500 ms duration binaurally presented with inter-trial intervals of 500–800 ms were compared with those from typically developing children (n = 32). SH01 was diagnosed with mild mental retardation and learning disabilities (F70.88), dysgraphia, dyslexia, and smaller vocabulary than typically developing (TD) peers. Her clinical phenotype resembled the phenotype of previously described patients with 22q13.33 microduplications (≈30 reported so far). SH01 had mild autistic symptoms but below the threshold for ASD diagnosis and microcephaly. No seizures or MRI abnormalities were reported. While SH01 had relatively preserved auditory event-related potential (ERP) with slightly attenuated P1, her 40-Hz ASSR was totally absent significantly deviating from TD’s ASSR. The absence of 40-Hz ASSR in patients with microduplication, which affected the SHANK3 gene, indicates deficient temporal resolution of the auditory system, which might underlie language problems and represent a neurophysiological biomarker of SHANK3 abnormalities.  相似文献   

15.
Flow-mediated dilation (FMD) of resistance arteries is essential for tissue perfusion but it decreases with ageing. As estrogen receptor alpha (Erα encoded by Esr1), and more precisely membrane ERα, plays an important role in FMD in young mice in a ligand-independent fashion, we evaluated its influence on this arteriolar function in ageing. We first confirmed that in young (6-month-old) mice, FMD of mesenteric resistance arteries was reduced in Esr1−/− (lacking ERα) and C451A-ERα (lacking membrane ERα). In old (24-month-old) mice, FMD was reduced in WT mice compared to young mice, whereas it was not further decreased in Esr1−/− and C451A-ERα mice. Markers of oxidative stress were similarly increased in old WT and C451A-ERα mice. Reduction in oxidative stress with superoxide dismutase plus catalase or Mito-tempo, which reduces mitochondrial superoxide restored FMD to a normal control level in young C451A-ERα mice as well as in old WT mice and old C451A-ERα mice. Estradiol-mediated dilation was absent in old WT mice. We conclude that oxidative stress is a key event in the decline of FMD, and that an early defect in membrane ERα recapitulates phenotypically and functionally ageing of these resistance arteries. The loss of this function could take part in vascular ageing.  相似文献   

16.
(1) Background: caspase-12 is activated during cytomegalovirus retinitis, although its role is presently unclear. (2) Methods: caspase-12−/− (KO) or caspase-12+/+ (WT) mice were immunosup eyes were analyzed by plaque assay, TUNEL assay, immunohistochemical staining, western blotting, and real-time PCR. (3) Results: increased retinitis and a more extensive virus spread were detected in the retina of infected eyes of KO mice compared to WT mice at day 14 p.i. Compared to MCMV injected WT eyes, mRNA levels of interferons α, β and γ were significantly reduced in the neural retina of MCMV-infected KO eyes at day 14 p.i. Although similar numbers of MCMV infected cells, similar virus titers and similar numbers of TUNEL-staining cells were detected in injected eyes of both KO and WT mice at days 7 and 10 p.i., significantly lower amounts of cleaved caspase-3 and p53 protein were detected in infected eyes of KO mice at both time points. (4) Conclusions: caspase-12 contributes to caspase-3-dependent and independent retinal bystander cell death during MCMV retinitis and may also play an important role in innate immunity against virus infection of the retina.  相似文献   

17.
Based on recent findings that show that depletion of factor XII (FXII) leads to better posttraumatic neurological recovery, we studied the effect of FXII-deficiency on post-traumatic cognitive and behavioral outcomes in female and male mice. In agreement with our previous findings, neurological deficits on day 7 after weight-drop traumatic brain injury (TBI) were significantly reduced in FXII−/− mice compared to wild type (WT) mice. Also, glycoprotein Ib (GPIb)-positive platelet aggregates were more frequent in brain microvasculature of WT than FXII−/− mice 3 months after TBI. Six weeks after TBI, memory for novel object was significantly reduced in both female and male WT but not in FXII−/− mice compared to sham-operated mice. In the setting of automated home-cage monitoring of socially housed mice in IntelliCages, female WT mice but not FXII−/− mice showed decreased exploration and reacted negatively to reward extinction one month after TBI. Since neuroendocrine stress after TBI might contribute to trauma-induced cognitive dysfunction and negative emotional contrast reactions, we measured peripheral corticosterone levels and the ration of heart, lung, and spleen weight to bodyweight. Three months after TBI, plasma corticosterone levels were significantly suppressed in both female and male WT but not in FXII−/− mice, while the relative heart weight increased in males but not in females of both phenotypes when compared to sham-operated mice. Our results indicate that FXII deficiency is associated with efficient post-traumatic behavioral and neuroendocrine recovery.  相似文献   

18.
Hepatocellular carcinoma (HCC) constitutes a devastating health burden. Recently, tumor microenvironment-directed interventions have profoundly changed the landscape of HCC therapy. In the present study, the function of the chemokine CXCL10 during fibrosis-associated hepatocarcinogenesis was analyzed with specific focus on its impact in shaping the tumor microenvironment. C57BL/6J wild type (WT) and Cxcl10 knockout mice (Cxcl10−/−) were treated with diethylnitrosamine (DEN) and tetrachloromethane (CCl4) to induce fibrosis-associated HCCs. Cxcl10 deficiency attenuated hepatocarcinogenesis by decreasing tumor cell proliferation as well as tumor vascularization and modulated tumor-associated extracellular matrix composition. Furthermore, the genetic inactivation of Cxcl10 mediated an alteration of the tumor-associated immune response and modified chemokine/chemokine receptor networks. The DEN/CCl4-treated Cxcl10−/− mice presented with a pro-inflammatory tumor microenvironment and an accumulation of anti-tumoral immune cells in the tissue. The most striking alteration in the Cxcl10−/− tumor immune microenvironment was a vast accumulation of anti-tumoral T cells in the invasive tumor margin. In summary, our results demonstrate that CXCL10 exerts a non-redundant impact on several hallmarks of the tumor microenvironment and especially modulates the infiltration of anti-tumorigenic immune cells in HCC. In the era of microenvironment-targeted HCC therapies, interfering with CXCL10 defines a novel asset for further improvement of therapeutic strategies.  相似文献   

19.
Approximately 50–80% of children with autism spectrum disorders (ASDs) exhibit sleep problems, but the contribution of circadian clock dysfunction to the development of ASDs remains largely unknown. The essential clock gene Bmal1 (Arntl or Mop3) has been associated with human sociability, and its missense mutation is found in ASD. Our recent study found that Bmal1-null mice exhibit a variety of autism-like phenotypes. Here, we further investigated whether an incomplete loss of Bmal1 function could cause significant autism-like behavioral changes in mice. Our results demonstrated that heterozygous Bmal1 deletion (Bmal1+/−) reduced the Bmal1 protein levels by ~50–75%. Reduced Bmal1 expression led to decreased levels of clock proteins, including Per1, Per2, Cry 1, and Clock but increased mTOR activities in the brain. Accordingly, Bmal1+/− mice exhibited aberrant ultrasonic vocalizations during maternal separation, deficits in sociability and social novelty, excessive repetitive behaviors, impairments in motor coordination, as well as increased anxiety-like behavior. The novel object recognition memory remained intact. Together, these results demonstrate that haploinsufficiency of Bmal1 can cause autism-like behavioral changes in mice, akin to those identified in Bmal1-null mice. This study provides further experimental evidence supporting a potential role for disrupted clock gene expression in the development of ASD.  相似文献   

20.
The effect of a cellular prion protein (PrPc) deficiency on neuroenergetics was primarily analyzed via surveying the expression of genes specifically involved in lactate/pyruvate metabolism, such as monocarboxylate transporters (MCT1, MCT2, MCT4). The aim of the present study was to elucidate a potential involvement of PrPc in the regulation of energy metabolism in different brain regions. By using quantitative real-time polymerase chain reaction (qRT-PCR), we observed a marked reduction in MCT1 mRNA expression in the cortex of symptomatic Zürich I Prnp−/− mice, as compared to their wild-type (WT) counterparts. MCT1 downregulation in the cortex was accompanied with significantly decreased expression of the MCT1 functional interplayer, the Na+/K+ ATPase α2 subunit. Conversely, the MCT1 mRNA level was significantly raised in the cerebellum of Prnp−/− vs. WT control group, without a substantial change in the Na+/K+ ATPase α2 subunit expression. To validate the observed mRNA findings, we confirmed the observed change in MCT1 mRNA expression level in the cortex at the protein level. MCT4, highly expressed in tissues that rely on glycolysis as an energy source, exhibited a significant reduction in the hippocampus of Prnp−/− vs. WT mice. The present study demonstrates that a lack of PrPc leads to altered MCT1 and MCT4 mRNA/protein expression in different brain regions of Prnp−/− vs. WT mice. Our findings provide evidence that PrPc might affect the monocarboxylate intercellular transport, which needs to be confirmed in further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号