首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Chronic inflammation of the adipose tissue (AT) is a critical component of obesity-induced insulin resistance and type 2 diabetes. Adipose tissue immune cells, including AT macrophages (ATMs), AT dendritic cells (ATDCs), and T cells, are dynamically regulated by obesity and participate in obesity-induced inflammation. Among AT resident immune cells, ATDCs are master immune regulators and engage in crosstalk with various immune cells to initiate and regulate immune responses. However, due to confounding markers and lack of animal models, their exact role and contribution to the initiation and maintenance of AT inflammation and insulin resistance have not been clearly elucidated. This paper reviews the current understanding of ATDCs and their role in obesity-induced AT inflammation. We also provide the potential mechanisms by which ATDCs regulate AT inflammation and insulin resistance in obesity. Finally, this review offers perspectives on ways to better dissect the distinct functions and contributions of ATDCs to obesity.  相似文献   

3.
The angiotensin II (Ang II) type 1 receptor (AT1R) is involved in the regulation of blood pressure (through vasoconstriction) and water and ion homeostasis (mediated by interaction with the endogenous agonist). AT1R can also be activated by auto-antibodies (AT1R-Abs), which are associated with manifold diseases, such as obliterative vasculopathy, preeclampsia and systemic sclerosis. Knowledge of the molecular mechanisms related to AT1R-Abs binding and associated signaling cascade (dys-)regulation remains fragmentary. The goal of this study was, therefore, to investigate details of the effects of AT1R-Abs on G-protein signaling and subsequent cell proliferation, as well as the putative contribution of the three extracellular receptor loops (ELs) to Abs-AT1R signaling. AT1R-Abs induced nuclear factor of activated T-cells (NFAT) signaling, which reflects Gq/11 and Gi activation. The impact on cell proliferation was tested in different cell systems, as well as activation-triggered receptor internalization. Blockwise alanine substitutions were designed to potentially investigate the role of ELs in AT1R-Abs-mediated effects. First, we demonstrate that Ang II-mediated internalization of AT1R is impeded by binding of AT1R-Abs. Secondly, exclusive AT1R-Abs-induced Gq/11 activation is most significant for NFAT stimulation and mediates cell proliferation. Interestingly, our studies also reveal that ligand-independent, baseline AT1R activation of Gi signaling has, in turn, a negative effect on cell proliferation. Indeed, inhibition of Gi basal activity potentiates proliferation triggered by AT1R-Abs. Finally, although AT1R containing EL1 and EL3 blockwise alanine mutations were not expressed on the human embryonic kidney293T (HEK293T) cell surface, we at least confirmed that parts of EL2 are involved in interactions between AT1R and Abs. This current study thus provides extended insights into the molecular action of AT1R-Abs and associated mechanisms of interrelated pathogenesis.  相似文献   

4.
The C-type natriuretic peptide receptor (NPRC) is expressed in many cell types and binds all natriuretic peptides with high affinity. Ligand binding results in the activation or inhibition of various intracellular signaling pathways. Although NPRC ligand binding has been shown to regulate various ion channels, the regulation of endothelial sodium channel (EnNaC) activity by NPRC activation has not been studied. The objective of this study was to investigate mechanisms of EnNaC regulation associated with NPRC activation in human aortic endothelial cells (hAoEC). EnNaC protein expression and activity was attenuated after treating hAoEC with the NPRC agonist cANF compared to vehicle, as demonstrated by Western blotting and patch clamping studies, respectively. NPRC knockdown studies using siRNA’s corroborated the specificity of EnNaC regulation by NPRC activation mediated by ligand binding. The concentration of multiple diacylglycerols (DAG) and the activity of protein kinase C (PKC) was augmented after treating hAoEC with cANF compared to vehicle, suggesting EnNaC activity is down-regulated upon NPRC ligand binding in a DAG-PKC dependent manner. The reciprocal cross-talk between NPRC activation and EnNaC inhibition represents a feedback mechanism that presumably is involved in the regulation of endothelial function and aortic stiffness.  相似文献   

5.
Adult humans and mice possess significant classical brown adipose tissues (BAT) and, upon cold-induction, acquire brown-like adipocytes in certain depots of white adipose tissues (WAT), known as beige adipose tissues or WAT browning/beiging. Activating thermogenic classical BAT or WAT beiging to generate heat limits diet-induced obesity or type-2 diabetes in mice. Adiponectin is a beneficial adipokine resisting diabetes, and causing “healthy obese” by increasing WAT expansion to limit lipotoxicity in other metabolic tissues during high-fat feeding. However, the role of its receptors, especially adiponectin receptor 1 (AdipoR1), on cold-induced thermogenesis in vivo in BAT and in WAT beiging is still elusive. Here, we established a cold-induction procedure in transgenic mice over-expressing AdipoR1 and applied a live 3-D [18F] fluorodeoxyglucose-PET/CT (18F-FDG PET/CT) scanning to measure BAT activity by determining glucose uptake in cold-acclimated transgenic mice. Results showed that cold-acclimated mice over-expressing AdipoR1 had diminished cold-induced glucose uptake, enlarged adipocyte size in BAT and in browned WAT, and reduced surface BAT/body temperature in vivo. Furthermore, decreased gene expression, related to thermogenic Ucp1, BAT-specific markers, BAT-enriched mitochondrial markers, lipolysis and fatty acid oxidation, and increased expression of whitening genes in BAT or in browned subcutaneous inguinal WAT of AdipoR1 mice are congruent with results of PET/CT scanning and surface body temperature in vivo. Moreover, differentiated brown-like beige adipocytes isolated from pre-adipocytes in subcutaneous WAT of transgenic AdipoR1 mice also had similar effects of lowered expression of thermogenic Ucp1, BAT selective markers, and BAT mitochondrial markers. Therefore, this study combines in vitro and in vivo results with live 3-D scanning and reveals one of the many facets of the adiponectin receptors in regulating energy homeostasis, especially in the involvement of cold-induced thermogenesis.  相似文献   

6.
Changes in lifestyle in developed countries have triggered the prevalence of obesity and type 2 diabetes mellitus (T2DM) in the latest years. Consequently, these metabolic diseases associated to insulin resistance, and the morbidity associated with them, accounts for enormous costs for the health systems. The best way to face this problem is to identify potential therapeutic targets and/or early biomarkers to help in the treatment and in the early detection. In the insulin receptor signaling cascade, the activities of protein tyrosine kinases and phosphatases are coordinated, thus, protein tyrosine kinases amplify the insulin signaling response, whereas phosphatases are required for the regulation of the rate and duration of that response. The focus of this review is to summarize the impact of transmembrane receptor protein tyrosine phosphatase (RPTPs) in the insulin signaling cascade and secretion, and their implication in metabolic diseases such as obesity and T2DM.  相似文献   

7.
This review article is focused on antihypertensive drugs, namely angiotensin converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB), and their immunomodulatory properties reported in hypertensive patients as well as in experimental settings involving studies on animal models and cell lines. The immune regulatory action of ACEI and ARB is mainly connected with the inhibition of proinflammatory cytokine secretion, diminished expression of adhesion molecules, and normalization of CRP concentration in the blood plasma. The topic has significant importance in future medical practice in the therapy of patients with comorbidities with underlying chronic inflammatory responses. Thus, this additional effect of immune regulatory action of ACEI and ARB may also benefit the treatment of patients with metabolic syndrome, allergies, or autoimmune disorders.  相似文献   

8.
The increased worldwide prevalence of obesity, insulin resistance, and their related metabolic complications have prompted the scientific world to search for new possibilities to combat obesity. Brown adipose tissue (BAT), due to its unique protein uncoupling protein 1 (UPC1) in the inner membrane of the mitochondria, has been acknowledged as a promising approach to increase energy expenditure. Activated brown adipocytes dissipate energy, resulting in heat production. In other words, BAT burns fat and increases the metabolic rate, promoting a negative energy balance. Moreover, BAT alleviates metabolic complications like dyslipidemia, impaired insulin secretion, and insulin resistance in type 2 diabetes. The aim of this review is to explore the role of BAT in total energy expenditure, as well as lipid and glucose homeostasis, and to discuss new possible activators of brown adipose tissue in humans to treat obesity and metabolic disorders.  相似文献   

9.
Blockers of the renin-angiotensin system (RAS) have been reported to increase the angiotensin converting enzyme (ACE)2, the cellular receptor of SARS-CoV-2, and thus the risk and course of COVID-19. Therefore, we investigated if angiotensin (Ang) II and RAS blockers affected ACE2 expression and SARS-CoV-2 infectivity in human epithelial bronchial Calu-3 cells. By infectivity and spike-mediated cell–cell fusion assays, we showed that Ang II acting on the angiotensin type 1 receptor markedly increased ACE2 at mRNA and protein levels, resulting in enhanced SARS-CoV-2 cell entry. These effects were abolished by irbesartan and not affected by the blockade of ACE-1-mediated Ang II formation with ramipril, and of ACE2- mediated Ang II conversion into Ang 1-7 with MLN-4760. Thus, enhanced Ang II production in patients with an activated RAS might expose to a greater spread of COVID-19 infection in lung cells. The protective action of Angiotensin type 1 receptor antagonists (ARBs) documented in these studies provides a mechanistic explanation for the lack of worse outcomes in high-risk COVID-19 patients on RAS blockers.  相似文献   

10.
The renin–angiotensin system (RAS) controls not only systemic functions, such as blood pressure, but also local tissue-specific events. Previous studies have shown that angiotensin II receptor type 1 (AT1R) and type 2 (AT2R), two RAS components, are expressed in chondrocytes. However, the angiotensin II (ANG II) effects exerted through these receptors on chondrocyte metabolism are not fully understood. In this study, we investigated the effects of ANG II and AT1R blockade on chondrocyte proliferation and differentiation. Firstly, we observed that ANG II significantly suppressed cell proliferation and glycosaminoglycan content in rat chondrocytic RCS cells. Additionally, ANG II decreased CCN2, which is an anabolic factor for chondrocytes, via increased MMP9. In Agtr1a-deficient RCS cells generated by the CRISPR-Cas9 system, Ccn2 and Aggrecan (Acan) expression increased. Losartan, an AT1R antagonist, blocked the ANG II-induced decrease in CCN2 production and Acan expression in RCS cells. These findings suggest that AT1R blockade reduces ANG II-induced chondrocyte degeneration. Interestingly, AT1R-positive cells, which were localized on the surface of the articular cartilage of 7-month-old mice expanded throughout the articular cartilage with aging. These findings suggest that ANG II regulates age-related cartilage degeneration through the ANG II–AT1R axis.  相似文献   

11.
Short-term post-weaning nutrition can result in long-lasting effects in later life. Partial replacement of glucose by galactose in the post-weaning diet showed direct effects on liver inflammation. Here, we examined this program on body weight, body composition, and insulin sensitivity at the adult age. Three-week-old female C57BL/6JRccHsd mice were fed a diet with glucose plus galactose (GAL; 16 energy% (en%) each) or a control diet with glucose (GLU; 32 en%) for three weeks, and afterward, both groups were given the same high-fat diet (HFD). After five weeks on a HFD, an oral glucose tolerance test was performed. After nine weeks on a HFD, energy metabolism was assessed by indirect calorimetry, and fasted mice were sacrificed fifteen minutes after a glucose bolus, followed by serum and tissue analyses. Body weight and body composition were not different between the post-weaning dietary groups, during the post-weaning period, or the HFD period. Glucose tolerance and energy metabolism in adulthood were not affected by the post-weaning diet. Serum adiponectin concentrations were significantly higher (p = 0.02) in GAL mice while insulin, leptin, and insulin-like growth factor 1 concentrations were not affected. Expression of Adipoq mRNA was significantly higher in gonadal white adipose tissue (gWAT; p = 0.03), while its receptors in the liver and skeletal muscles remained unaffected. Irs2 expression was significantly lower in skeletal muscles (p = 0.01), but not in gWAT or Irs1 expression (in both tissues). Gene expressions of inflammatory markers in gWAT and the liver were also not affected. Conclusively, galactose in the post-weaning diet significantly improved circulating adiponectin concentrations and reduced skeletal muscle Irs2 expression in adulthood without alterations in fat mass, glucose tolerance, and inflammation.  相似文献   

12.
Apolipoprotein CIII (apoCIII) is proinflammatory and increases in high-fat diet (HFD)-induced obesity and insulin resistance. We have previously shown that reducing apoCIII improves insulin sensitivity in vivo by complex mechanisms involving liver and brown adipose tissue. In this study the focus was on subcutaneous (SAT) and visceral (VAT) white adipose tissue (WAT). Mice were either given HFD for 14 weeks and directly from start also treated with antisense oligonucleotide (ASO) against apoCIII or given HFD for 10 weeks and HFD+ASO for an additional 14 weeks. Both groups had animals treated with inactive (Scr) ASO as controls and in parallel chow-fed mice were injected with saline. Preventing an increase or lowering apoCIII in the HFD-fed mice decreased adipocytes’ size, reduced expression of inflammatory cytokines and increased expression of genes related to thermogenesis and beiging. Isolated adipocytes from both VAT and SAT from the ASO-treated mice had normal insulin-induced inhibition of lipolysis compared to cells from Scr-treated mice. In conclusion, the HFD-induced metabolic derangements in WATs can be prevented and reversed by lowering apoCIII.  相似文献   

13.
Resveratrol is a biologically active diphenolic compound exerting multiple beneficial effects in the organism, including anti-diabetic properties. This action is, however, not fully elucidated. In the present study, we examined effects of resveratrol on some parameters related to insulin signaling, and also on diabetes-associated dysregulation in Goto-Kakizaki (GK) rats with congenital type 2 diabetes. Resveratrol was given at the dose of 20 mg/kg b.w. for 10 weeks. It was shown that the expression and phosphorylation levels of insulin receptor in the skeletal muscle of GK rats were significantly decreased, compared with control animals. However, these changes were totally prevented by resveratrol. Liver expression of the insulin receptor was also reduced, but in this case, resveratrol was ineffective. Resveratrol was also demonstrated to significantly influence parameters of insulin binding (dissociation constant and binding capacity) in the skeletal muscle and liver. Moreover, it was shown that the expression levels of proteins related to intracellular glucose transport (GLUT4 and TUG) in adipose tissue of GK rats were significantly decreased. However, treatment with resveratrol completely abolished these changes. Resveratrol was found to induce normalization of TUG expression in the skeletal muscle. Blood levels of insulin and GIP were elevated, whereas proinsulin and GLP-1 diminished in GK rats. However, concentrations of these hormones were not affected by resveratrol. These results indicate that resveratrol partially ameliorates diabetes-associated dysregulation in GK rats. The most relevant finding covers the normalization of the insulin receptor expression in the skeletal muscle and also GLUT4 and TUG in adipose tissue.  相似文献   

14.
Compound 21 (C21), an AT2 receptor agonist, and Angiotensin 1-7 (Ang 1-7), through Mas receptor, play an important role in the modulation of the protective arm of the renin-angiotensin system. The aim of this study was to investigate in an experimental model of angiotensin II-dependent hypertension whether the activation of the potentially protective arm of the renin-angiotensin system, through AT2 or Mas receptor stimulation, counteracts the onset of myocardial fibrosis and hypertrophy, and whether these effects are mediated by inflammatory mechanism and/or sympathetic activation. Sprague Dawley rats (n = 67) were treated for 1 (n = 25) and 4 (n = 42) weeks and divided in the following groups: (a) Angiotensin II (Ang II, 200 ng/kg/min, osmotic minipumps, sub cutis); (b) Ang II+Compound 21 (C21, 0.3 mg/kg/day, intraperitoneal); (c) Ang II+Ang 1-7 (576 µg/kg/day, intraperitoneal); (d) Ang II+Losartan (50 mg/kg/day, per os); (e) control group (physiological saline, sub cutis). Systolic blood pressure was measured by tail cuff method and, at the end of the experimental period, the rats were euthanized and the heart was excised to evaluate myocardial fibrosis, hypertrophy, inflammatory cell infiltration and tyrosine hydroxylase expression, used as marker of sympathetic activity. Ang II caused a significant increase of blood pressure, myocardial interstitial and perivascular fibrosis and myocardial hypertrophy, as compared to control groups. C21 or Ang 1-7 administration did not modify the increase in blood pressure in Ang II treated rats, but both prevented the development of myocardial fibrosis and hypertrophy. Treatment with losartan blocked the onset of hypertension and myocardial fibrosis and hypertrophy in Ang II treated rats. Activation of AT2 receptors or Mas receptors prevents the onset of myocardial fibrosis and hypertrophy in Ang II-dependent hypertension through the reduction of myocardial inflammatory cell infiltration and tyrosine hydroxylase expression. Unlike what happens in case of treatment with losartan, the antifibrotic and antihypertrophic effects that follow the activation of the AT2 or Mas receptors are independent on the modulation of blood pressure.  相似文献   

15.
The physiological and pathophysiological relevance of the angiotensin II type 1 (AT1) G protein-coupled receptor no longer needs to be proven in the cardiovascular system. The renin–angiotensin system and the AT1 receptor are the targets of several classes of therapeutics (such as angiotensin converting enzyme inhibitors or angiotensin receptor blockers, ARBs) used as first-line treatments in cardiovascular diseases. The importance of AT1 in the regulation of the cerebrovascular system is also acknowledged. However, despite numerous beneficial effects in preclinical experiments, ARBs do not induce satisfactory curative results in clinical stroke studies. A better understanding of AT1 signaling and the development of biased AT1 agonists, able to selectively activate the β-arrestin transduction pathway rather than the Gq pathway, have led to new therapeutic strategies to target detrimental effects of AT1 activation. In this paper, we review the involvement of AT1 in cerebrovascular diseases as well as recent advances in the understanding of its molecular dynamics and biased or non-biased signaling. We also describe why these alternative signaling pathways induced by β-arrestin biased AT1 agonists could be considered as new therapeutic avenues for cerebrovascular diseases.  相似文献   

16.
17.
Schwann cells play an important role in peripheral nerve function, and their dysfunction has been implicated in the pathogenesis of diabetic neuropathy and other demyelinating diseases. The physiological functions of insulin in Schwann cells remain unclear and therefore define the aim of this study. By using immortalized adult Fischer rat Schwann cells (IFRS1), we investigated the mechanism of the stimulating effects of insulin on the cell proliferation and expression of myelin proteins (myelin protein zero (MPZ) and myelin basic protein (MBP). The application of insulin to IFRS1 cells increased the proliferative activity and induced phosphorylation of Akt and ERK, but not P38-MAPK. The proliferative potential of insulin-stimulated IFRS1 was significantly suppressed by the addition of LY294002, a PI3 kinase inhibitor. The insulin-stimulated increase in MPZ expression was significantly suppressed by the addition of PD98059, a MEK inhibitor. Furthermore, insulin-increased MBP expression was significantly suppressed by the addition of LY294002. These findings suggest that both PI3-K/Akt and ERK/MEK pathways are involved in insulin-induced cell growth and upregulation of MPZ and MBP in IFRS1 Schwann cells.  相似文献   

18.
19.
Heart failure is a major cause of death worldwide with insufficient treatment options. In the search for pathomechanisms, we found up-regulation of an enzyme, stearoyl-CoA desaturase 1 (Scd1), in different experimental models of heart failure induced by advanced atherosclerosis, chronic pressure overload, and/or volume overload. Because the pathophysiological role of Scd1/SCD in heart failure is not clear, we investigated the impact of cardiac SCD upregulation through the generation of C57BL/6-Tg(MHCSCD)Sjaa mice with myocardium-specific expression of SCD. Echocardiographic examination showed that 4.9-fold-increased SCD levels triggered cardiac hypertrophy and symptoms of heart failure at an age of eight months. Tg-SCD mice had a significantly reduced left ventricular cardiac ejection fraction of 25.7 ± 2.9% compared to 54.3 ± 4.5% of non-transgenic B6 control mice. Whole-genome gene expression profiling identified up-regulated heart-failure-related genes such as resistin, adiponectin, and fatty acid synthase, and type 1 and 3 collagens. Tg-SCD mice were characterized by cardiac lipid accumulation with 1.6- and 1.7-fold-increased cardiac contents of saturated lipids, palmitate, and stearate, respectively. In contrast, unsaturated lipids were not changed. Together with saturated lipids, apoptosis-enhancing p53 protein contents were elevated. Imaging by autoradiography revealed that the heart-failure-promoting and membrane-spanning angiotensin II AT1 receptor protein of Tg-SCD hearts was significantly up-regulated. In transfected HEK cells, the expression of SCD increased the number of cell-surface angiotensin II AT1 receptor binding sites. In addition, increased AT1 receptor protein levels were detected by fluorescence spectroscopy of fluorescent protein-labeled AT1 receptor-Cerulean. Taken together, we found that SCD promotes cardiac dysfunction with overload of cardiotoxic saturated lipids and up-regulation of the heart-failure-promoting AT1 receptor protein.  相似文献   

20.
Hypertension is a risk factor for osteoporosis. Animal and epidemiological studies demonstrate that high blood pressure is associated with increased calcium loss, elevated parathyroid hormone, and increased calcium movement from bone. However, the mechanism responsible for hypertension-related osteoporosis remains elusive. Recent epidemiological studies indicate the benefits of Angiotensin II Receptors Blockade (ARB) on decreasing fracture risks. Since receptors for angiotensin II, the targets of ARB, are expressed in both osteoblasts and osteoclasts, we postulated that angiotensin II plays an important role in hypertension-related osteoporosis. Cbfa1 and RANKL, the important factors for maintaining bone homeostasis and key mediators in controlling osteoblast and osteoclast differentiation, are both regulated by cAMP-dependent signaling. Angiotensin II along with factors such as LDL, HDL, NO and homocysteine that are commonly altered both in hypertension and osteoporosis, can down-regulate the expression of Cbfa1 but up-regulate RANKL expression via the cAMP signaling pathway. We thus hypothesized that, by altering the ratio of Cbfa1/RANKL expression via the cAMP-dependent pathway, angiotensin II differently regulates osteoblast and osteoclast differentiation leading to enhanced bone resorption and reduced bone formation. Since ARB can antagonize the adverse effect of angiotensin II on bone by lowering cAMP levels and modifying other downstream targets, including LDL, HDL, NO and Cbfa1/RANKL, we propose the hypothesis that the antagonistic effects of ARB may also be exerted via cAMP signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号