首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic wasting disease (CWD) is a prion disease found in both free-ranging and farmed cervids. Susceptibility of these animals to CWD is governed by various exogenous and endogenous factors. Past studies have demonstrated that polymorphisms within the prion protein (PrP) sequence itself affect an animal’s susceptibility to CWD. PrP polymorphisms can modulate CWD pathogenesis in two ways: the ability of the endogenous prion protein (PrPC) to convert into infectious prions (PrPSc) or it can give rise to novel prion strains. In vivo studies in susceptible cervids, complemented by studies in transgenic mice expressing the corresponding cervid PrP sequence, show that each polymorphism has distinct effects on both PrPC and PrPSc. It is not entirely clear how these polymorphisms are responsible for these effects, but in vitro studies suggest they play a role in modifying PrP epitopes crucial for PrPC to PrPSc conversion and determining PrPC stability. PrP polymorphisms are unique to one or two cervid species and most confer a certain degree of reduced susceptibility to CWD. However, to date, there are no reports of polymorphic cervid PrP alleles providing absolute resistance to CWD. Studies on polymorphisms have focused on those found in CWD-endemic areas, with the hope that understanding the role of an animal’s genetics in CWD can help to predict, contain, or prevent transmission of CWD.  相似文献   

2.
The prevalence of chronic kidney disease (CKD) is increasing worldwide, and the mortality rate continues to be unacceptably high. The biomarkers currently used in clinical practice are considered relevant when there is already significant renal impairment compromising the early use of potentially successful therapeutic interventions. More sensitive and specific biomarkers to detect CKD earlier on and improve patients’ prognoses are an important unmet medical need. The aim of this review is to summarize the recent literature on new promising early CKD biomarkers of renal function, tubular lesions, endothelial dysfunction and inflammation, and on the auspicious findings from metabolomic studies in this field. Most of the studied biomarkers require further validation in large studies and in a broad range of populations in order to be implemented into routine CKD management. A panel of biomarkers, including earlier biomarkers of renal damage, seems to be a reasonable approach to be applied in clinical practice to allow earlier diagnosis and better disease characterization based on the underlying etiologic process.  相似文献   

3.
Mineralocorticoid receptor antagonists (MRA) are drugs with a potentially broad spectrum of action. They have been reported to have healing effects in many diseases, such as chronic heart failure, hypertension, or nephrotic syndrome. Numerous studies suggest that mineralocorticoid receptor activation is pathogenic and a progression factor of chronic kidney disease (CKD); however, results of studies on the use of MRA in the treatment of CKD are inconclusive. Current guidelines recommend against the use of MRA in patients with advanced CKD. Although, there is growing interest on their use in this population due to treatment benefits. In this review, we summarize studies which were purposed to evaluate the impact of MRA therapy on CKD patients. Despite many benefits of this treatment e.g., reducing cardiovascular mortality or alleviating proteinuria, steroidal MRA (such as spironolactone or eplerenone) have a low safety profile. They often lead to hyperkalemia complications which are dangerous in patients with CKD, and diabetic nephropathy, especially in hemodialysis patients. Studies on recently developed nonsteroidal MRA showed that they have fewer side effects. In our review, we discuss steroidal and nonsteroidal MRA treatment effects on the estimated glomerular filtration rate (eGFR), proteinuria, the cardiovascular system, and hyperkalemia in CKD patients. We present new content and recent publications in this field.  相似文献   

4.
Increasing potassium intake ameliorates blood pressure (BP) and cardiovascular (CV) prognoses in the general population; therefore the World Health Organization recommends a high-potassium diet (90–120 mEq/day). Hyperkalaemia is a rare condition in healthy individuals due to the ability of the kidneys to effectively excrete dietary potassium load in urine, while an increase in serum K+ is prevalent in patients with chronic kidney disease (CKD). Hyperkalaemia prevalence increases in more advanced CKD stages, and is associated with a poor prognosis. This scenario generates controversy on the correct nutritional approach to hyperkalaemia in CKD patients, considering the unproven link between potassium intake and serum K+ levels. Another concern is that drug-induced hyperkalaemia leads to the down-titration or withdrawal of renin-angiotensin system inhibitors (RASI) and mineralocorticoids receptors antagonists (MRA) in patients with CKD, depriving these patients of central therapeutic interventions aimed at delaying CKD progression and decreasing CV mortality. The new K+-binder drugs (Patiromer and Sodium-Zirconium Cyclosilicate) have proven to be adequate and safe therapeutic options to control serum K+ in CKD patients, enabling RASI and MRA therapy, and possibly, a more liberal intake of fruit and vegetables.  相似文献   

5.
Chronic kidney disease (CKD) patients have a higher risk of developing early cardiovascular disease (CVD). Although vascular calcification (VC) is one of the strongest predictors of CVD risk, its diagnosis among the CKD population remains a serious clinical challenge. This is mainly due to the complexity of VC, which results from various interconnected pathological mechanisms occurring at early stages and at multiples sites, affecting the medial and intimal layers of the vascular tree. Here, we review the most used and recently developed imaging techniques, here referred to as imaging biomarkers, for VC detection and monitoring, while discussing their strengths and limitations considering the specificities of VC in a CKD context. Although imaging biomarkers have a crucial role in the diagnosis of VC, with important insights into CVD risk, circulating biomarkers represent an added value by reflecting the molecular dynamics and mechanisms involved in VC pathophysiological pathways, opening new avenues into the early detection and targeted interventions. We propose that a combined strategy using imaging and circulating biomarkers with a role in multiple VC molecular mechanisms, such as Fetuin-A, Matrix Gla protein, Gla-rich protein and calciprotein particles, should represent high prognostic value for management of CVD risk in the CKD population.  相似文献   

6.
Chronic kidney disease (CKD) is an important global public health problem due to its high prevalence and morbidity. Although the treatment of nephrology patients has changed considerably, ineffectiveness and side effects of medications represent a major issue. In an effort to elucidate the contribution of genetic variants located in several genes in the response to treatment of patients with CKD, we performed a systematic review and meta-analysis of all available pharmacogenetics studies. The association between genotype distribution and response to medication was examined using the dominant, recessive, and additive inheritance models. Subgroup analysis based on ethnicity was also performed. In total, 29 studies were included in the meta-analysis, which examined the association of 11 genes (16 polymorphisms) with the response to treatment regarding CKD. Among the 29 studies, 18 studies included patients with renal transplantation, 8 involved patients with nephrotic syndrome, and 3 studies included patients with lupus nephritis. The present meta-analysis provides strong evidence for the contribution of variants harbored in the ABCB1, IL-10, ITPA, MIF, and TNF genes that creates some genetic predisposition that reduces effectiveness or is associated with adverse events of medications used in CKD.  相似文献   

7.
Thiols (sulfhydryl groups) are effective antioxidants that can preserve the correct structure of proteins, and can protect cells and tissues from damage induced by oxidative stress. Abnormal levels of thiols have been measured in the blood of patients with moderate-to-severe chronic kidney disease (CKD) compared to healthy subjects, as well as in end-stage renal disease (ESRD) patients on haemodialysis or peritoneal dialysis. The levels of protein thiols (a measure of the endogenous antioxidant capacity inversely related to protein oxidation) and S-thiolated proteins (mixed disulphides of protein thiols and low molecular mass thiols), and the protein thiolation index (the molar ratio of the S-thiolated proteins to free protein thiols in plasma) have been investigated in the plasma or red blood cells of CKD and ESRD patients as possible biomarkers of oxidative stress. This type of minimally invasive analysis provides valuable information on the redox status of the less-easily accessible tissues and organs, and of the whole organism. This review provides an overview of reversible modifications in protein thiols in the setting of CKD and renal replacement therapy. The evidence suggests that protein thiols, S-thiolated proteins, and the protein thiolation index are promising biomarkers of reversible oxidative stress that could be included in the routine monitoring of CKD and ESRD patients.  相似文献   

8.
Patients with chronic kidney disease (CKD) are at a highly increased risk of cardiovascular complications, with increased vascular inflammation, accelerated atherogenesis and enhanced thrombotic risk. Considering the central role of the endothelium in protecting from atherogenesis and thrombosis, as well as its cardioprotective role in regulating vasorelaxation, this study aimed to systematically integrate literature on CKD-associated endothelial dysfunction, including the underlying molecular mechanisms, into a comprehensive overview. Therefore, we conducted a systematic review of literature describing uremic serum or uremic toxin-induced vascular dysfunction with a special focus on the endothelium. This revealed 39 studies analyzing the effects of uremic serum or the uremic toxins indoxyl sulfate, cyanate, modified LDL, the advanced glycation end products N-carboxymethyl-lysine and N-carboxyethyl-lysine, p-cresol and p-cresyl sulfate, phosphate, uric acid and asymmetric dimethylarginine. Most studies described an increase in inflammation, oxidative stress, leukocyte migration and adhesion, cell death and a thrombotic phenotype upon uremic conditions or uremic toxin treatment of endothelial cells. Cellular signaling pathways that were frequently activated included the ROS, MAPK/NF-κB, the Aryl-Hydrocarbon-Receptor and RAGE pathways. Overall, this review provides detailed insights into pathophysiological and molecular mechanisms underlying endothelial dysfunction in CKD. Targeting these pathways may provide new therapeutic strategies reducing increased the cardiovascular risk in CKD.  相似文献   

9.
Nonalcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease worldwide, affecting up to ~30% of adult populations. NAFLD defines a spectrum of progressive liver conditions ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma, which often occur in close and bidirectional associations with metabolic disorders. Chronic kidney disease (CKD) is characterized by anatomic and/or functional renal damage, ultimately resulting in a reduced glomerular filtration rate. The physiological axis linking the liver and kidneys often passes unnoticed until clinically significant portal hypertension, as a major complication of cirrhosis, becomes apparent in the form of ascites, refractory ascites, or hepatorenal syndrome. However, the extensive evidence accumulated since 2008 indicates that noncirrhotic NAFLD is associated with a higher risk of incident CKD, independent of obesity, type 2 diabetes, and other common renal risk factors. In addition, subclinical portal hypertension has been demonstrated to occur in noncirrhotic NAFLD, with a potential adverse impact on renal vasoregulation. However, the mechanisms underlying this association remain unexplored to a substantial extent. With this background, in this review we discuss the current evidence showing a strong association between NAFLD and the risk of CKD, and the putative biological mechanisms underpinning this association. We also discuss in depth the potential pathogenic role of the hepatorenal reflex, which may be triggered by subclinical portal hypertension and is a poorly investigated but promising research topic. Finally, we address emerging pharmacotherapies for NAFLD that may also beneficially affect the risk of developing CKD in individuals with NAFLD.  相似文献   

10.
Chronic kidney disease (CKD) is a non-specific type of kidney disease that causes a gradual decline in kidney function (from months to years). CKD is a significant risk factor for death, cardiovascular disease, and end-stage renal disease. CKDs of different origins may have the same clinical and laboratory manifestations but different progression rates, which requires early diagnosis to determine. This review focuses on protein/peptide biomarkers of the leading causes of CKD: diabetic nephropathy, IgA nephropathy, lupus nephritis, focal segmental glomerulosclerosis, and membranous nephropathy. Mass spectrometry (MS) approaches provided the most information about urinary peptide and protein contents in different nephropathies. New analytical approaches allow urinary proteomic–peptide profiles to be used as early non-invasive diagnostic tools for specific morphological forms of kidney disease and may become a safe alternative to renal biopsy. MS studies of the key pathogenetic mechanisms of renal disease progression may also contribute to developing new approaches for targeted therapy.  相似文献   

11.
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) and end-stage kidney disease worldwide. In Japan, the proportion of new patients requiring dialysis due to DKD has remained unchanged over the past five years. Early diagnosis and treatment are extremely important for the prevention of DKD progression. Albuminuria is the most promising biomarker currently available for diagnosing DKD and predicting its prognosis at an early stage; however, it has relatively poor specificity and sensitivity for DKD. Measuring the serum levels of tumor necrosis factor receptors (TNFRs; TNFR1 and TNFR2) is an alternative for predicting the prognosis of patients with CKD, irrespective of their diabetes status. Cardiorenal risk factor management and renin–angiotensin system inhibitor usage are effective in slowing the DKD progression, although the residual risk remains high in patients with DKD. Recently, two classes of antihyperglycemic agents, sodium–glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide-1 receptor agonists, in addition to nonsteroidal selective mineralocorticoid receptor antagonists, which are less potent blood pressure-lowering and potassium-sparing agents, have emerged as cardiorenal disease-modifying therapies for preventing the DKD progression. This review focused on the SGLT2 inhibitor-based therapeutic strategies that have demonstrated cardiorenal benefits in patients with type 2 diabetes.  相似文献   

12.
The major cause of mortality in patients with chronic kidney disease (CKD) is atherosclerosis related to traditional and non-traditional risk factors. However, the understanding of the molecular specificity that distinguishes the risk factors for classical cardiovascular disease (CVD) and CKD-related atherosclerosis (CKD-A) is far from complete. In this study we investigated the disease-related differences in the proteomes of patients with atherosclerosis related and non-related to CKD. Plasma collected from patients in various stages of CKD, CVD patients without symptoms of kidney dysfunction, and healthy volunteers (HVs), were analyzed by a coupled label-free and mass spectrometry approach. Dysregulated proteins were confirmed by an enzyme-linked immunosorbent assay (ELISA). All proteomic data were correlated with kidney disease development and were subjected to bioinformatics analysis. One hundred sixty-two differentially expressed proteins were identified. By directly comparing the plasma proteomes from HVs, CKD, and CVD patients in one study, we demonstrated that proteins involved in inflammation, blood coagulation, oxidative stress, vascular damage, and calcification process exhibited greater alterations in patients with atherosclerosis related with CKD. These data indicate that the above nontraditional risk factors are strongly specific for CKD-A and appear to be less essential for the development of “classical” CVD.  相似文献   

13.
Chronic kidney disease (CKD) is a worldwide public health issue affecting 14% of the general population. However, research focusing on CKD mechanisms/treatment is limited because of a lack of animal models recapitulating the disease physiopathology, including its complications. We analyzed the effects of a three-week diet rich in sodium oxalate (OXA diet) on rats and showed that, compared to controls, rats developed a stable CKD with a 60% reduction in glomerular filtration rate, elevated blood urea levels and proteinuria. Histological analyses revealed massive cortical disorganization, tubular atrophy and fibrosis. Males and females were sensitive to the OXA diet, but decreasing the diet period to one week led to GFR significance but not stable diminution. Rats treated with the OXA diet also displayed classical CKD complications such as elevated blood pressure and reduced hematocrit. Functional cardiac analyses revealed that the OXA diet triggered significant cardiac dysfunction. Altogether, our results showed the feasibility of using a convenient and non-invasive strategy to induce CKD and its classical systemic complications in rats. This model, which avoids kidney mass loss or acute toxicity, has strong potential for research into CKD mechanisms and novel therapies, which could protect and postpone the use of dialysis or transplantation.  相似文献   

14.
Chronic kidney disease (CKD) is normally related to proteinuria, a common finding in a compromised glomerular filtration barrier (GFB). GFB is a structure composed of glomerular endothelial cells, the basement membrane, and the podocytes. CKD with podocyte damage may be associated with actin cytoskeleton reorganization, resulting in podocyte effacement. Gelsolin plays a critical role in several diseases, including cardiovascular diseases and cancer. Our current study aimed to determine the connection between gelsolin and podocyte, and thus the mechanism underlying podocyte injury in CKD. Experiments were carried out on Drosophila to demonstrate whether gelsolin had a physiological role in maintaining podocyte. Furthermore, the survival rate of gelsolin-knocked down Drosophila larvae was extensively reduced after AgNO3 exposure. Secondly, the in vitro podocytes treated with puromycin aminonucleoside (PAN) enhanced the gelsolin protein expression, as well as small GTPase RhoA and Rac1, which also regulated actin dynamic expression incrementally with the PAN concentrations. Thirdly, we further demonstrated in vivo that GSN was highly expressed inside the glomeruli with mitochondrial dysfunction in a CKD mouse model. Our findings suggest that an excess of gelsolin may contribute to podocytes damage in glomeruli.  相似文献   

15.
Circular RNA (circRNA) is a kind of novel endogenous noncoding RNA formed through back-splicing of mRNA precursor. The biogenesis, degradation, nucleus–cytoplasm transport, location, and even translation of circRNA are controlled by RNA-binding proteins (RBPs). Therefore, circRNAs and the chaperoned RBPs play critical roles in biological functions that significantly contribute to normal animal development and disease. In this review, we systematically characterize the possible molecular mechanism of circRNA–protein interactions, summarize the latest research on circRNA–protein interactions in muscle development and myocardial disease, and discuss the future application of circRNA in treating muscle diseases. Finally, we provide several valid prediction methods and experimental verification approaches. Our review reveals the significance of circRNAs and their protein chaperones and provides a reference for further study in this field.  相似文献   

16.
Anemia affects millions of patients with chronic kidney disease (CKD) and prompt iron supplementation can lead to reductions in the required dose of erythropoiesis-stimulating agents, thereby reducing medical costs. Oral and intravenous (IV) traditional iron preparations are considered far from ideal, primarily due to gastrointestinal intolerability and the potential risk of infusion reactions, respectively. Fortunately, the emergence of novel iron replacement therapies has engendered a paradigm shift in the treatment of iron deficiency anemia in patients with CKD. For example, oral ferric citrate is an efficacious and safe phosphate binder that increases iron stores to maintain hemoglobin levels. Additional benefits include reductions in fibroblast growth factor 23 levels and the activation of 1,25 dihydroxyvitamin D. The new-generation IV iron preparations ferumoxytol, iron isomaltoside 1000, and ferric carboxymaltose are characterized by a reduced risk of infusion reactions and are clinically well tolerated as a rapid high-dose infusion. In patients undergoing hemodialysis (HD), ferric pyrophosphate citrate (FPC) administered through dialysate enables the replacement of ongoing uremic and HD-related iron loss. FPC transports iron directly to transferrin, bypassing the reticuloendothelial system and avoiding iron sequestration. Moreover, this paper summarizes recent advancements of hypoxia-inducible factor prolyl hydroxylase inhibitors and future perspectives in renal anemia management.  相似文献   

17.
Exercise training is now recognized as an interesting therapeutic strategy in managing obesity and its related disorders. However, there is still a lack of knowledge about its impact on obesity-induced chronic kidney disease (CKD). Here, we investigated the effects of a delayed protocol of endurance exercise training (EET) as well as the underlying mechanism in obese mice presenting CKD. Mice fed a high-fat diet (HFD) or a low-fat diet (LFD) for 12 weeks were subsequently submitted to an 8-weeks EET protocol. Delayed treatment with EET in obese mice prevented body weight gain associated with a reduced calorie intake. EET intervention counteracted obesity-related disorders including glucose intolerance, insulin resistance, dyslipidaemia and hepatic steatosis. Moreover, our data demonstrated for the first time the beneficial effects of EET on obesity-induced CKD as evidenced by an improvement of obesity-related glomerulopathy, tubulo-interstitial fibrosis, inflammation and oxidative stress. EET also prevented renal lipid depositions in the proximal tubule. These results were associated with an improvement of the AMPK pathway by EET in renal tissue. AMPK-mediated phosphorylation of ACC and ULK-1 were particularly enhanced leading to increased fatty acid oxidation and autophagy improvement with EET in obese mice.  相似文献   

18.
This study aimed to elucidate the mechanisms explaining the persistence of anemia and resistance to recombinant human erythropoietin (rHuEPO) therapy in a rat model of chronic kidney disease (CKD)-associated anemia with formation of anti-rHuEPO antibodies. The remnant kidney rat model of CKD induced by 5/6 nephrectomy was used to test a long-term (nine weeks) high dose of rHuEPO (200 UI/kg bw/week) treatment. Hematological and biochemical parameters were evaluated as well as serum and tissue (kidney, liver and/or duodenum) protein and/or gene expression of mediators of erythropoiesis, iron metabolism and tissue hypoxia, inflammation, and fibrosis. Long-term treatment with a high rHuEPO dose is associated with development of resistance to therapy as a result of antibodies formation. In this condition, serum EPO levels are not deficient and iron availability is recovered by increased duodenal absorption. However, erythropoiesis is not stimulated, and the resistance to endogenous EPO effect and to rHuEPO therapy results from the development of a hypoxic, inflammatory and fibrotic milieu in the kidney tissue. This study provides new insights that could be important to ameliorate the current therapeutic strategies used to treat patients with CKD-associated anemia, in particular those that become resistant to rHuEPO therapy.  相似文献   

19.
During the last two decades, the potential impact of vitamin D on the risk of cardiovascular disease (CVD) has been rigorously studied. Data regarding the effect of vitamin D on CVD risk are puzzling: observational data indicate an inverse nonlinear association between vitamin D status and CVD events, with the highest CVD risk at severe vitamin D deficiency; however, preclinical data and randomized controlled trials (RCTs) show several beneficial effects of vitamin D on the surrogate parameters of vascular and cardiac function. By contrast, Mendelian randomization studies and large RCTs in the general population and in patients with chronic kidney disease, a high-risk group for CVD events, largely report no significant beneficial effect of vitamin D treatment on CVD events. In patients with rickets and osteomalacia, cardiovascular complications are infrequently reported, except for an increased risk of heart failure. In conclusion, there is no strong evidence for beneficial vitamin D effects on CVD risk, either in the general population or in high-risk groups. Whether some subgroups such as individuals with severe vitamin D deficiency or a combination of low vitamin D status with specific gene variants and/or certain nutrition/lifestyle factors would benefit from vitamin D (metabolite) administration, remains to be studied.  相似文献   

20.
Chronic Kidney Disease (CKD) is a debilitating disease associated with several secondary complications that increase comorbidity and mortality. In patients with CKD, there is a significant qualitative and quantitative alteration in the gut microbiota, which, consequently, also leads to reduced production of beneficial bacterial metabolites, such as short-chain fatty acids. Evidence supports the beneficial effects of short-chain fatty acids in modulating inflammation and oxidative stress, which are implicated in CKD pathogenesis and progression. Therefore, this review will provide an overview of the current knowledge, based on pre-clinical and clinical evidence, on the effect of SCFAs on CKD-associated inflammation and oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号