首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘魏  王芹芳 《河北化工》2012,35(2):25-27
多发性硬化症(Multiple scslerosis,MS)是一种以中枢神经系统炎性脱髓鞘病变为主要特点的自身免疫性疾病,易发于年轻人身上。临床上常用免疫调节剂治疗,但这些治疗药需经皮下、肌肉或静脉等非肠胃途径给药,故亟需开发更为方便的口服治疗药。综述了有关口服MS药物及其在治疗方面的最新研究进展。  相似文献   

2.
Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous system (CNS) that leads to progressive physical disability. Recent evidence has suggested that P2X7 receptor (P2X7R)-mediated purinergic signalling pathways play a role in MS-associated neuroinflammation, possibly contributing to disease pathogenesis. To evaluate possible associations between P2X7R polymorphisms and MS disease severity, we performed an association study of five non-synonymous SNPs coding variants of the P2X7R gene: rs1718119 Ala348Thr, rs2230911 Thr357Ser, rs2230912 Gln460Arg, rs3751143 Glu496Ala, and rs28360457 Arg307Gln, modulating P2X7R expression in 128 MS patients (relapsing remitting MS, RRMS: n = 94; secondary progressive, SPMS: n = 34). All patients were genotyped, and multiple sclerosis severity score (MSSS) was evaluated in every case; 189 healthy subjects were enrolled as well as controls. Results showed that P2X7R rs1718119(A) 348Thr and rs22390912(G) 464Arg, two SNPs of minor allele frequency (MAF) known to confer gain of function to the P2X7R protein, were associated with significantly higher MSSS in RRMS patients alone (SMRR (p < 0.001, p = 0.01, respectively)). Interestingly, two whole haplotypes resulted in having significant association with MSSS in these same patients. Thus: (1) the P2X7R-4 “ACGAG” haplotype, characterized by the co-presence of the rs1718119-rs2230912 AG MAF alleles, was associated with higher MSSS (Beta: 1.11 p = 0.04), and (2) the P2X7R-1 “GCAAG” complementary haplotype, which contains the rs1718119 and rs2230912 GA wild-type alleles, was more frequently carried by patients with lower MSSS and less severe disease (Beta: −1.54 p < 0.001). Although being preliminary and needing confirmation in an ampler cohort, these results suggest that 348Thr and 464Arg variants have a role as modulators of disease severity in RRMS patients.  相似文献   

3.
Multiple sclerosis (MS) is a chronic, progressive central neurological disease characterized by inflammation and demyelination. In patients with MS, dysregulation of the autonomic nervous system may present with various clinical symptoms including sweating abnormalities, urinary dysfunction, orthostatic dysregulation, gastrointestinal symptoms, and sexual dysfunction. These autonomic disturbances reduce the quality of life of affected patients and constitute a clinical challenge to the physician due to variability of clinical presentation and inconsistent data on diagnosis and treatment. Early diagnosis and initiation of individualized interdisciplinary and multimodal strategies is beneficial in the management of autonomic dysfunction in MS. This review summarizes the current literature on the most prevalent aspects of autonomic dysfunction in MS and provides reference to underlying pathophysiological mechanisms as well as means of diagnosis and treatment.  相似文献   

4.
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system and the association with other autoimmune diseases is well-documented. There are many therapeutic options for the treatment of MS. Most of the available drugs cause drug-induced liver injury (DILI) to variable extents with heterogeneous clinical and biological manifestations, including liver injury with or without signs of hypersensitivity and autoimmunity. The diagnosis of DILI may be particularly difficult because MS is frequently associated with idiopathic autoimmune hepatitis. Recent advances suggest that MS and immune-mediated DILI could be promoted by genetic factors, including HLA genotype. In addition, some of these drugs may promote hepatitis B virus reactivation. This review explores the potential hepatotoxicity of drugs used to treat MS and the criteria to distinguish DILI from idiopathic autoimmune hepatitis associated with MS. The role of susceptible genes both promoting MS and causing the hepatotoxicity of the drug used for MS treatment is also discussed.  相似文献   

5.
The prevalence of multiple sclerosis and the complexity of its etiology and pathogenesis require further study of the factors underlying the progression of this disease. The prominent role of mitochondria in neurons makes this organelle a vulnerable target for CNS diseases. The purpose of this review is to consider the role of mitochondrial dysfunction in the pathogenesis of multiple sclerosis, as well as to propose new promising therapeutic strategies aimed at restoring mitochondrial function in multiple sclerosis.  相似文献   

6.
Multiple sclerosis (MS) is a chronic disease of the central nervous system that affects the brain and spinal cord. There are several disease courses in MS including relapsing–remitting MS (RRMS), primary progressive MS (PPMS), and secondary progressive MS (SPMS). Up to 50% of MS patients experience depressive disorders. Major depression (MD) is a serious comorbidity of MS. Many dysfunctions including neuroinflammation, peripheral inflammation, gut dysbiosis, chronic oxidative and nitrosative stress, and neuroendocrine and mitochondrial abnormalities may contribute to the comorbidity between MS and MD. In addition to these actions, medical treatment and microRNA (miRNA) regulation may also be involved in the mechanisms of the comorbidity between MS and MD. In the study, I review many common miRNA biomarkers for both diseases. These common miRNA biomarkers may help further explore the association between MS and MD.  相似文献   

7.
B cell-depleting therapies such as ocrelizumab (OCR) are highly effective in people with multiple sclerosis (MS). Especially at treatment start and initial infusion, infusion-related reactions (IRR) are a common adverse event. The relevance of acute changes of cell-depleting therapies on peripheral immune compartments and routine lab testing is important for clinical practice. We systematically analyzed routine blood parameters, detailed blood immunophenotyping and serum cytokine profiles in 45 MS patients starting on OCR. Blood samples were collected before and after corticosteroid premedication and directly after each OCR infusion of the first three ocrelizumab infusions. Blood B cells were rapidly depleted and accompanied only by a mild cytokine release at the first OCR infusion. Cytokine release was not significantly detectable from a third application in line with decreasing IRRs. B cell depletion was accompanied by short-lived changes in other immune cell populations in number, activation and cytokine secretion after each OCR infusion. Standard lab parameters did not show any clinically relevant changes. Our data demonstrate only mild changes during the first OCR infusion, which are not present any more during long-term treatment.  相似文献   

8.
In recent years, several studies have examined the multifaceted role of mitochondria in Multiple Sclerosis (MS), suggesting that, besides inflammation and demyelination, mitochondrial aberration is a crucial factor in mediating axonal degeneration, the latter being responsible for persistent disabilities in MS patients. Therefore, mitochondria have been recognized as a possible multiple sclerosis therapeutic target. Recently, mitochondrial transplantation has become a new term for the transfer of live mitochondria into damaged cells for the treatment of various diseases, including neurodegenerative diseases. In this hypothesis, we propose mitochondrial transplantation as a new, potentially applicable approach to counteract axonal degeneration in multiple sclerosis.  相似文献   

9.
Multiple sclerosis (MS) is a chronic inflammatory, demyelinating and neurodegenerative disorder. Since acetylcholine (ACh) is known to participate in the inflammatory response, we investigated the possible relationship between pro-inflammatory cytokines and acetylcholine levels in relapsing-remitting multiple sclerosis (RR-MS) patients. Levels of ACh and pro-inflammatory cytokines IL1-β and IL-17 were measured both in cerebrospinal fluid (CSF) and sera of 22 RR-MS patients in the relapsing phase and in 17 control subjects affected by other non-neurological diseases (OND). We observed higher levels of pro-inflammatory cytokines such as IL-1β and IL-17 in both CSF and serum of RR-MS patients compared to control subjects. Moreover, ACh levels were lower in CSF and serum of RR-MS patients compared to levels of control subjects. Although the relationship between high inflammatory cytokine levels and low ACh levels need to be further investigated in the future, our data suggest that IL-1β, and cytokines induced by it, such as IL-17 and ACh, may be involved in the pathogenesis of MS.  相似文献   

10.
Multiple sclerosis (MS) has been clinically considered a chronic inflammatory disease of the white matter; however, in the last decade growing evidence supported an important role of gray matter pathology as a major contributor of MS-related disability and the involvement of synaptic structures assumed a key role in the pathophysiology of the disease. Synaptic contacts are considered central units in the information flow, involved in synaptic transmission and plasticity, critical processes for the shaping and functioning of brain networks. During the course of MS, the immune system and its diffusible mediators interact with synaptic structures leading to changes in their structure and function, influencing brain network dynamics. The purpose of this review is to provide an overview of the existing literature on synaptic involvement during experimental and human MS, in order to understand the mechanisms by which synaptic failure eventually leads to brain networks alterations and contributes to disabling MS symptoms and disease progression.  相似文献   

11.
Multiple sclerosis (MS), a chronic inflammatory and demyelinating disease of the central nervous system (CNS), is a major clinical and societal problem, which has a tremendous impact on the life of patients and their proxies. Current immunomodulatory and anti-inflammatory therapies prove to be relatively effective; however, they fail to concomitantly stop ongoing neurological deterioration and do not reverse acquired disability. The proportion to which genetic and environmental factors contribute to the etiology of MS is still incompletely understood; however, a recent association between MS etiology and obesity was shown, with obesity greatly increasing the risk of developing MS. An altered balance of adipokines, which are white adipose tissue (WAT) hormones, plays an important role in the low-grade chronic inflammation during obesity by their pervasive modification of local and systemic inflammation. Vice versa, inflammatory factors secreted by immune cells affect adipokine function. To explore the role of adipokines in MS pathology, we will here review the reciprocal effects of adipokines and immune cells and summarize alterations in adipokine levels in MS patient cohorts. Finally, we will discuss proof-of-concept studies demonstrating the therapeutic potential of adipokines to target both neuroinflammation and neurodegeneration processes in MS.  相似文献   

12.
13.
An association between varicella zoster virus (VZV) and multiple sclerosis (MS) has been reported in Mexican populations. The aim of this study was to compare the response of T cells from MS patients, during relapse and remission, to in vitro stimulation with VZV, adenovirus (AV) and Epstein–Barr virus (EBV). Proliferation and cytokine secretion of T cells from 29 relapsing-remitting MS patients and 38 healthy controls (HC) were analyzed by flow cytometry after stimulating with VZV, AV or EBV. IgG and IgM levels against VZV and EBV were quantified using Enzyme-Linked Immunosorbent Assay. Relapsing MS patients showed a higher percentage of responding CD4+ and CD8+ T cells against VZV compared to AV. In HC and remitting MS patients, proliferation of CD4+ T cells was higher when stimulated with VZV as compared to EBV. Moreover, T cells isolated from remitting patients secreted predominantly Th1 cytokines when cell cultures were stimulated with VZV. Finally, high concentration of anti-VZV IgG was found in sera from patients and controls. The results support previous studies of an VZV-MS association in the particular population studied and provide additional information about the possible role of this virus in the pathogenesis of MS.  相似文献   

14.
This article recapitulates the evidence on the role of mammalian targets of rapamycin (mTOR) complex pathways in multiple sclerosis (MS). Key biological processes that intersect with mTOR signaling cascades include autophagy, inflammasome activation, innate (e.g., microglial) and adaptive (B and T cell) immune responses, and axonal and neuronal toxicity/degeneration. There is robust evidence that mTOR inhibitors, such as rapamycin, ameliorate the clinical course of the animal model of MS, experimental autoimmune encephalomyelitis (EAE). New, evolving data unravel mechanisms underlying the therapeutic effect on EAE, which include balance among T-effector and T-regulatory cells, and mTOR effects on myeloid cell function, polarization, and antigen presentation, with relevance to MS pathogenesis. Radiologic and preliminary clinical data from a phase 2 randomized, controlled trial of temsirolimus (a rapamycin analogue) in MS show moderate efficacy, with significant adverse effects. Large clinical trials of indirect mTOR inhibitors (metformin) in MS are lacking; however, a smaller prospective, non-randomized study shows some potentially promising radiological results in combination with ex vivo beneficial effects on immune cells that might warrant further investigation. Importantly, the study of mTOR pathway contributions to autoimmune inflammatory demyelination and multiple sclerosis illustrates the difficulties in the clinical application of animal model results. Nevertheless, it is not inconceivable that targeting metabolism in the future with cell-selective mTOR inhibitors (compared to the broad inhibitors tried to date) could be developed to improve efficacy and reduce side effects.  相似文献   

15.
16.
The glial cells in the central nervous system express diverse inward rectifying potassium channels (Kir). They express multiple Kir channel subtypes that are likely to have distinct functional roles related to their differences in conductance, and sensitivity to intracellular and extracellular factors. Dysfunction in a major astrocyte potassium channel, Kir4.1, appears as an early pathological event underlying neuronal phenotypes in several neurological diseases. The autoimmune effects on the potassium channel have not yet been fully described in the literature. However, several research groups have reported that the potassium channels are an immune target in patients with various neurological disorders. In 2012, Srivastava et al. reported about Kir4.1, a new immune target for autoantibodies in patients with multiple sclerosis (MS). Follow-up studies have been conducted by several research groups, but no clear conclusion has been reached. Most follow-up studies, including ours, have reported that the prevalence of Kir4.1-seropositive patients with MS was lower than that in the initial study. Therefore, we extensively review studies on the method of antibody testing, seroprevalence of MS, and other neurological diseases in patients with MS. Finally, based on the role of Kir4.1 in MS, we consider whether it could be an immune target in this disease.  相似文献   

17.
Putamen atrophy and its long-term progress during disease course were recently shown in patients with multiple sclerosis (MS). Here we investigated retrospectively the time point of atrophy onset in patients with relapsing-remitting MS (RRMS). 68 patients with RRMS and 26 healthy controls (HC) were admitted to 3T MRI in a cross-sectional study. We quantitatively analyzed the putamen volume of individual patients in relation to disease duration by correcting for age and intracranial volume (ICV). Patient’s relative putamen volume (RPV), expressed in percent of ICV, was significantly reduced compared to HC. Based on the correlation between RPV and age, we computed the age-corrected RPV deviation (ΔRPV) from HC. Patients showed significantly negative ΔRPV. Interestingly, the age-corrected ΔRPV depended logarithmically on disease duration: Directly after first symptom manifestation, patients already showed a reduced RPV followed by a further degressive volumetric decline. This means that atrophy progression was stronger in the first than in later years of disease. Putamen atrophy starts directly after initial symptom manifestation or even years before, and progresses in a degressive manner. Due to its important role in neurological functions, early detection of putamen atrophy seems necessary. High-resolution structural MRI allows monitoring of disease course.  相似文献   

18.
Changes in cytokine profiles and cytokine networks are known to be a hallmark of autoimmune diseases, including systemic lupus erythematosus (SLE) and multiple sclerosis (MS). However, cytokine profiles research studies are usually based on the analysis of a small number of cytokines and give conflicting results. In this work, we analyzed cytokine profiles of 41 analytes in patients with SLE and MS compared with healthy donors using multiplex immunoassay. The SLE group included treated patients, while the MS patients were drug-free. Levels of 11 cytokines, IL-1b, IL-1RA, IL-6, IL-9, IL-10, IL-15, MCP-1/CCL2, Fractalkine/CX3CL1, MIP-1a/CCL3, MIP-1b/CCL4, and TNFa, were increased, but sCD40L, PDGF-AA, and MDC/CCL22 levels were decreased in SLE patients. Thus, changes in the cytokine profile in SLE have been associated with the dysregulation of interleukins, TNF superfamily members, and chemokines. In the case of MS, levels of 10 cytokines, sCD40L, CCL2, CCL3, CCL22, PDGF-AA, PDGF-AB/BB, EGF, IL-8, TGF-a, and VEGF, decreased significantly compared to the control group. Therefore, cytokine network dysregulation in MS is characterized by abnormal levels of growth factors and chemokines. Cross-disorder analysis of cytokine levels in MS and SLE showed significant differences between 22 cytokines. Protein interaction network analysis showed that all significantly altered cytokines in both SLE and MS are functionally interconnected. Thus, MS and SLE may be associated with impaired functional relationships in the cytokine network. A cytokine correlation networks analysis revealed changes in correlation clusters in SLE and MS. These data expand the understanding of abnormal regulatory interactions in cytokine profiles associated with autoimmune diseases.  相似文献   

19.
Microglia, astrocytes, and oligodendrocyte progenitor cells (OPCs) may serve as targets for remyelination-enhancing therapy. Low-intensity pulsed ultrasound (LIPUS) has been demonstrated to ameliorate myelin loss and inhibit neuroinflammation in animal models of brain disorders; however, the underlying mechanisms through which LIPUS stimulates remyelination and glial activation are not well-understood. This study explored the impacts of LIPUS on remyelination and resident cells following lysolecithin (LPC)-induced local demyelination in the hippocampus. Demyelination was induced by the micro-injection of 1.5 μL of 1% LPC into the rat hippocampus, and the treatment groups received daily LIPUS stimulation for 5 days. The therapeutic effects of LIPUS on LPC-induced demyelination were assessed through immunohistochemistry staining. The staining was performed to evaluate remyelination and Iba-1 staining as a microglia marker. Our data revealed that LIPUS significantly increased myelin basic protein (MBP) expression. Moreover, the IHC results showed that LIPUS significantly inhibited glial cell activation, enhanced mature oligodendrocyte density, and promoted brain-derived neurotrophic factor (BDNF) expression at the lesion site. In addition, a heterologous population of microglia with various morphologies can be found in the demyelination lesion after LIPUS treatment. These data show that LIPUS stimulation may serve as a potential treatment for accelerating remyelination through the attenuation of glial activation and the enhancement of mature oligodendrocyte density and BDNF production.  相似文献   

20.
Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system associated with chronic inflammation, demyelination, and axonal damage. MS is a highly heterogeneous disease that leads to discrepancies regarding the clinical appearance, progression, and therapy response of patients. Therefore, there is a strong unmet need for clinically relevant biomarkers capable of recapitulating the features of the disease. Experimental autoimmune encephalomyelitis (EAE) is a valuable model for studying the pathophysiology of MS as it recapitulates the main hallmarks of the disease: inflammation, blood-brain barrier (BBB) disruption, gliosis, myelin damage, and repair mechanisms. In this study, we used the EAE-PLP animal model and established a molecular RNA signature for each phase of the disease (onset, peak, remission). We compared variances of expression of known biomarkers by RT-qPCR in the brain and spinal cord of sham and EAE animals monitoring each of the five hallmarks of the disease. Using magnetic cell isolation technology, we isolated microglia and oligodendrocytes of mice of each category, and we compared the RNA expression variations. We identify genes deregulated during a restricted time frame, and we provide insight into the timing and interrelationships of pathological disease processes at the organ and cell levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号