首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
滚动轴承故障定位,特别是对其性能退化程度的诊断可以更有效地进行设备维护以降低停机率.提出了对滚动轴承不同故障位置及性能退化程度的非平稳振动信号进行特征提取和智能分类的故障诊断方法.该方法对各状态振动信号进行经验模态分解,得到一系列固有模态函数和一个残余分量.经验模态分解方法具有分解自适应性和分解唯一性.对每个固有模态函数建立自回归模型,分别采用Yule Walker和Ulrych-Clayton两种方法求得模型参数和残差方差,并以此作为各类状态信号的特征矩阵,输入到改进的超球多类支持向量机分类器,判断滚动轴承故障位置及性能退化程度.实验结果表明,提出的方法可同时实现滚动轴承故障位置及性能退化程度的智能诊断,且基于经验模态分解结合自回归模型的Ulrych-Clayton参数估计进行特征提取的诊断方法识别率更高.  相似文献   

2.
张竞文  熊立新    夏强  边敦新 《微电机》2022,(4):53-58
为实现开关磁阻电机功率变换器故障诊断,本文提出了一种改进变分模态分解结合奇异值分析的方法,基于经验模态分解自适应特性和中心频率确定变分模态分解的分解数,并对故障相电流进行处理,根据互信息分析选择最佳模态分量构造初始特征矩阵,进行奇异值分解后计算归一化奇异值作为特征向量,输入支持向量机分类器进行故障识别。为验证诊断方法的可行性,建立了仿真模型与其他诊断方法进行了对比;搭建了开关磁阻电机实验台,测试了开路、短路故障状态,仿真和实验结果均表明本文所提方法可减小噪声影响,提高故障识别准确率。  相似文献   

3.
基于特征迁移学习的变工况下滚动轴承故障诊断方法   总被引:2,自引:0,他引:2  
针对滚动轴承尤其是变工况条件下很难或无法获取大量带标签的振动数据,以致诊断准确率低的问题,提出一种基于变分模态分解(variationalmodedecomposition,VMD)及多特征构造和迁移学习相结合的滚动轴承故障诊断方法。该方法利用VMD对滚动轴承各状态振动信号进行分解,得到一系列固有模态函数,对其构成的矩阵进行奇异值分解求奇异值及奇异值熵,再结合振动信号的时域、频域特征构造多特征集。同时引入半监督迁移成分分析方法(semisupervised transfer component analysis,SSTCA),并对其核函数进行多核构造,将不同工况样本特征共同映射到一个共享再生核Hilbert空间,进而提高数据类内紧凑性和类间区分性。采用最大均值差异嵌入法选择更有效的数据作为源域,将源域特征样本输入支持向量机(supportvectormachine,SVM)进行训练,测试映射后的目标域特征样本。实验表明,所提多核SSTCA-SVM方法与其他方法相比较,在变工况下滚动轴承多状态分类中具有更高准确率。  相似文献   

4.
针对故障滚动轴承振动信号中含有干扰信号,难以准确提取出故障信息,提出了一种基于奇异值分解(SVD)、变分模态分解(VMD)、和支持向量机(SVM)的滚动轴承故障诊断方法。首先利用奇异值分解对信号进行处理,根据奇异值峰度差分谱来确定分解后重构矩阵的有效阶数,然后根据该有效阶数重构信号,对重构后的信号进行VMD分解,根据上述有效阶数确定分解的本征模态函数(IMF)分量的个数,从分解后的IMF分量中提取故障特征参数,将其作为支持向量机的输入参数进行故障诊断。最后采用合肥工业大学轴承试验机进行验证,并与直接进VMD分解及基于带通滤波器信号去噪的故障诊断方法进行对比,结果表明该方法能有效识别滚动轴承的故障类型,可用于滚动轴承故障诊断。  相似文献   

5.
牵引供电系统发生故障时,如何快速诊断故障,对维护铁路的正常运输秩序有极大影响。为此,提出了一种基于EMD奇异值熵和SVM结合的故障诊断方法。以牵引供电系统发生故障时的现场故障波形为原始数据,首先将故障数据进行EMD分解,将得到的本证模态函数(IMF)和残差作为特征向量矩阵,并对其进行奇异值分解;然后根据信息熵理论定义奇异值熵,并将计算得到的奇异值熵作为特征量输入SVM分类器中进行训练和测试,得到最终的故障分类模型;最后通过分析表明该方法的准确率为93.8%,能对牵引供电系统4种典型故障进行诊断。  相似文献   

6.
针对滚动轴承故障特征不易提取,进而影响诊断精度的问题,研究一种将信号处理与智能算法相结合的轴承故障诊断方法.首先,利用粒子群算法对变分模态分解(VMD)法进行优化,以确定VMD法的最优输入参数,并利用优化VMD算法对振动信号进行分解得到若干本征模态函数进而建立特征矩阵.然后,对特征矩阵进行奇异值分解,根据不同故障下奇异...  相似文献   

7.
风电机组轴承处于早期故障阶段时,故障特征信号微弱,受环境噪声及信号衰减的影响较大,因此轴承早期故障特征的提取一直是个难点。为了有效提取风机滚动轴承的故障特征,提出了基于变分模态分解(Variational Mode Decomposition,VMD)和奇异值能量差分谱的特征提取方法。首先对轴承信号进行VMD分解得到一系列固有模态函数(Intrinsic Mode Function,IMF),然后选取敏感IMF进行奇异值分解,并利用奇异值能量差分谱选取有效奇异值进行信号重构,最后对重构信号进行包络谱分析,进而提取故障特征。实验分析结果验证了所述方法的有效性。  相似文献   

8.
针对支持向量机不平衡样本分类倾斜性问题,提出一种欠采样支持向量机分类器。构建包含少类样本的最小封闭超球体,计算各个多类样本到包含少类样本最小封闭超球体球心的距离,利用该距离对多类样本进行欠采样,产生新的训练集,实现训练集的平衡。该方法和其他不平衡分类方法在基准数据集的分类结果表明该方法在识别率和分类速度方面的有效性。将该方法应用于永磁同步电机驱动电路功率开关管开路故障诊断中,结果表明该方法缩短故障分类器的训练时间,提高了故障分类器的泛化能力和诊断速度。  相似文献   

9.
为实现滚动轴承故障的精确诊断,提出一种基于集成经验模态分解与粒子群算法优化的支持向量机的故障诊断方法。利用EEMD方法分解振动信号,依据经验选取合适的内禀模态函数进行能量值及包络谱特征幅值比等故障特征参量的计算,构建滚动轴承故障特征向量,然后基于少量不同故障部位及故障程度的样本,利用粒子群算法对支持向量机进行参数优化,进而训练样本并建立故障模型,最后对测试样本进行故障诊断,观察该方法的诊断效果。实验表明,该方法可对多种不同故障状态进行诊断,且分类精度高,证明了振动分析与智能算法结合的方法可有效实现滚动轴承的故障诊断。  相似文献   

10.
针对滚动轴承故障信号非线性、非平稳特征导致的故障频率难以提取的问题,提出一种基于补充总体平均经验模态分解(Complementary EEMD,CEEMD)和奇异值差分谱结合的滚动轴承故障诊断方法。CEEMD分解向原信号成对地添加符号相反的白噪声,几乎消除残留白噪声的影响。首先,对故障信号利用CEEMD算法进行分解,得到若干IMF(Intrinsic Mode Function)分量,然后运用相关系数—峭度准则对IMF分量进行筛选并重构,再对重构信号进行奇异值分解,并求出奇异值差分谱,根据奇异值差分谱理论进行消噪和重构,最后对重构信号进行Hilbert包络谱分析,提取故障频率。实验结果表明,提出的方法,能精确地提取滚动轴承的故障频率。  相似文献   

11.
针对水电机组早期故障信号信噪比低的问题,本文将奇异值分解(SVD)和深度置信网络(DBN)相结合进行故障诊断。首先,利用包含噪声的振动信号构造Hankel矩阵,对其进行奇异值分解,采用奇异值差分谱法选取有效奇异值进行相空间重构,实现降噪的目的;然后,对降噪后的振动信号进奇异值分解,用所得的整个奇异值序列构造特征向量;最后,建立深度置信网络分类器模型,实现水电机组的故障诊断。同时,将所提方法与BP神经网络,多分类支持向量机进行对比。结果表明,本文所提方法能够更加可靠高效地识别故障类型,具有一定的应用价值。  相似文献   

12.
为有效提高滚动轴承故障诊断准确率,提出了基于自适应噪声集合经验模态分解(CEEMDAN)气泡熵(BE)和支持向量机(SVM)相结合的轴承故障诊断方法。首先经CEEMDAN分解得到一系列本征模态函数(IMF)分量,然后筛选重要IMF分量计算其气泡熵值,构建故障特征向量并输入到经算术优化算法(AOA)优化的SVM模型中进行训练和轴承故障分类。结果表明该方法识别准确率高达992%,相比GA SVM准确率提升了28%,也能成功识别出滚动轴承单一故障与复合故障,可以用于轴承故障分类。  相似文献   

13.
为满足断路器机械状态监测的高可靠性要求,弥补现有方法易将轻微故障及无训练故障样本类型误识别为正常状态的不足,提出一种基于局域均值分解(LMD)能量熵和支持向量数据描述(SVDD)的高压断路器机械状态监测新方法。首先,利用LMD方法将断路器振动信号分解为一系列的PF(Product Function)分量,将各PF分量的包络按时间等间隔分段,并提取各PF分量包络的能量熵构成特征向量;然后,采用正常状态断路器振动信号的LMD能量熵向量训练SVDD分类器;最后,通过SVDD分类器对断路器的机械状态进行判断。实测信号实验证明,新方法比支持向量机(SVM)、BP神经网络(BPNN)等传统多类分类方法有更好的状态监测效果。  相似文献   

14.
《高压电器》2016,(10):86-91
换流器结构复杂,其故障信号难以诊断。文中基于奇异值分解(SVD)和支持向量机(SVM)提出了一种换流器故障诊断的新方法,对选取的故障信号矩阵进行SVD分解,所得奇异值的大小反映故障信息量的大小,选取最大奇异值对应的特征矩阵作为样本,用SVM进行训练分类。当换流器发生故障时,对故障信号矩阵进行SVD分解,用训练所得的SVM诊断器进行故障诊断。仿真表明,SVD分解可以有效提取换流器故障特征,通过SVM可以准确诊断换流器各种故障,文中方法快速准确。  相似文献   

15.
为提高行波保护在各种工况下的可靠性,分析区内、外故障时线路两端的初始行波电流变化规律,提出一种基于多分辨奇异值分解和随机森林的同杆双回线路区内外故障识别方法.该方法通过提取故障后线路两端的行波电流数据进行相模变换,选取变换后的同向模量电流进行6层多分辨奇异值分解,计算每层的电流积分作为特征向量输入随机森林分类器模型中进...  相似文献   

16.
针对滚动轴承早期性能退化点难以检测的问题,提出一种结合改进变分模态分解(VMD)和综合特征指标的滚动轴承性能退化评估方法。首先使用K-L散度优化VMD的参数,用优化后的VMD对轴承振动信号进行分解,通过Wasserstein距离筛选对退化特征较为敏感的模态分量,对其奇异值分解得到奇异值特征;结合信号的熵能比和置信值组成滚动轴承退化综合特征指标,最后构建支持向量数据描述模型计算性能退化指标,实现滚动轴承的早期微弱故障检测及性能退化评估。利用轴承全寿命实验数据验证方法的有效性,对早期性能退化点的检测结果相较于其他退化评估方法有所提前,为滚动轴承性能退化评估提供新思路。  相似文献   

17.
为了有效提取高压断路器振动信号的特征,提出了一种基于变分模态分解(Variational Mode Decomposition, VMD)模糊熵和支持向量机(Support Vector Machine, SVM)的特征向量提取方法,并采用SVM分类器对断路器的故障类型进行识别。首先,使用VMD对断路器的振动信号进行分解,得到若干个模态分量;然后,计算每一个模态分量的模糊熵,将其组成特征向量;最后,将上述特征向量导入到SVM分类器中进行训练,得到训练好的SVM模型,使用该模型对断路器4种运行状态下的样本数据进行故障识别。结果表明,基于VMD模糊熵的特征向量提取方法所提取出的特征向量相对基于经验模态分解(Empirical Mode Decomposition, EMD)样本熵的特征向量提取方法所提取出的特征向量可分性较好;在小样本的模式识别中,SVM相比于BP神经网络,具有更高的识别精度,能够有效识别断路器的故障。  相似文献   

18.
负载在滚动轴承的运行过程中通常是变化的,针对变负载下滚动轴承不同故障位置及不同性能退化程度多状态识别困难的问题,提出一种基于集合经验模态分解–希尔伯特(ensemble empirical mode decomposition-Hilbert,EEMD-Hilbert)包络谱和深度信念网络(deep belief network,DBN)的滚动轴承状态识别方法。该方法首先对滚动轴承各状态振动信号进行EEMD,然后选取敏感本征模态函数(intrinsic mode function,IMF),并对其进行Hilbert变换求取包络谱。最后将各状态振动信号的IMF包络谱按顺序构建新的高维数据,输入到经遗传算法优化各隐藏层节点结构的DBN中,实现变负载下滚动轴承的多状态识别。实验结果表明:在运用DBN进行滚动轴承10种状态识别过程中,训练数据采用某种负载,测试数据选用其他负载的情况下,EEMD-Hilbert包络谱比时域或频域幅值谱能更好地体现出滚动轴承不同负载下的多状态特征;且DBN相对浅层学习的支持向量机和BP神经网络算法,具有更高的识别率,各数据集识别率均达到92.5%以上。  相似文献   

19.
滚动轴承在风电机组中广泛应用,其运行状态直接影响整台风机的性能。提出EEMD(总体平均经验模态分解)和Hilbert包络分析相结合的方法对滚动轴承进行故障诊断。经验模态分解具有自适应性,但存在一些不足,易产生虚假分量和模态混叠现象。针对EMD分解方法的不足,引入改进型算法EEMD。首先将振动加速度信号进行EEMD分解,计算各阶IMF峭度值的大小,选择峭度值较大的IMF分量,利用Hilbert变换对其进行包络谱分析,提取故障特征频率,辨识滚动轴承故障。通过对实验采集的滚动轴承振动信号进行分析,证明了该方法的有效性和准确性。  相似文献   

20.
针对滚动轴承故障信号易受环境噪声干扰,故障特征信息获取相对困难的问题,提出了基于变分模态分解(VMD)与快速谱峭度的滚动轴承故障特征提取方法.首先将轴承信号分解为若干个固有模态分量(IMF),然后利用最大相关峭度解卷积算法对各阶模态分量进行计算,选取相关峭度值相对较大的几个IMF分量作为故障信息最突出的研究对象,并对其...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号