共查询到20条相似文献,搜索用时 51 毫秒
1.
模糊C均值(FCM)聚类算法采取随机选取聚类中心的方法,这种方法使得FCM算法在局部范围内容易获得最优解,但在全局范围内效果较差,且FCM算法中聚类簇的个数一般需要人为设定。面对上述种种问题,文中将蚁群聚类算法和FCM聚类算法进行结合,获得了一种改进的FCM聚类算法。该算法在初步聚类中利用蚁群聚类产生聚类中心和簇的个数,将产生的聚类中心提供给FCM算法进行再次聚类。利用蚁群聚类的全局搜索和并行运算的优点避免了聚类易陷入局部最优解的缺陷。经过实验验证,该算法较一般FCM算法具有更好的性能。 相似文献
2.
针对传统图像分割算法对不同类型噪声敏感性缺陷的问题,基于临近像素空间距离的模糊C均值聚类算法即SFCM (fuzzy C means clustering algorithm based on the space distance of the nearest pixels)算法,采用核化的空间距离公式,将点到点之间的距离转化为点到空间的距离,很好的平衡了考察像素点临近像素点的灰度信息与位置信息间的关系,进一步克服了临近像素的位置差异对考察像素影响不同的缺点.通过在合成图像和自然图像上的大量实验并与几个传统算法进行对比,不仅表现出了很强的抗干扰能力,提高了聚类精度,并且很好的保留了原图像边缘等细节信息,体现出了较强的鲁棒性. 相似文献
3.
模糊 C 均值(FCM)聚类算法采取随机选取聚类中心的方法,这种方法使得 FCM 算法在局部范围内容易获得最优解,但在全局范围内效果较差,且 FCM 算法中聚类簇的个数一般需要人为设定.面对上述种种问题,文中将蚁群聚类算法和 FCM 聚类算法进行结合,获得了一种改进的 FCM 聚类算法.该算法在初步聚类中利用蚁群聚类产生聚类中心和簇的个数,将产生的聚类中心提供给 FCM 算法进行再次聚类.利用蚁群聚类的全局搜索和并行运算的优点避免了聚类易陷入局部最优解的缺陷.经过实验验证,该算法较一般 FCM 算法具有更好的性能. 相似文献
4.
目的 为了进一步提高噪声图像分割的抗噪性和准确性,提出一种结合类内距离和类间距离的改进可能聚类算法并将其应用于图像分割。方法 该算法避免了传统可能性聚类分割算法中仅仅考虑以样本点到聚类中心的距离作为算法的测度,将类内距离与类间距离相结合作为算法的新测度,即考虑了类内紧密程度又考虑了类间离散程度,以便对不同的聚类结构有较强的稳定性和更好的抗噪能力,并且将直方图融入可能模糊聚类分割算法中提出快速可能模糊聚类分割算法,使其对各种较复杂图像的分割具有即时性。结果 通过人工合成图像和实际遥感图像分割测试结果表明,本文改进可能聚类算法是有效的,其分割轮廓清晰,分类准确且噪声较小,其误分率相比其他算法至少降低了2个百分点,同时能获得更满意的分割效果。结论 针对模糊C-均值聚类分割算法和可能性聚类分割算法对于背景和目标颜色相近的图像分类不准确的缺陷,将类内距离与类间距离相结合作为算法的测度有效的解决了图像分割归类问题,并且结合直方图提出快速可能模糊聚类分割算法使其对于大篇幅复杂图像也具有适用性。 相似文献
5.
基于距离的模糊聚类算法是把数据对象视为互相独立的,虽然在一定程度上反映了数据对象间的位置关系,但不能反映多重关系,使计算量急剧增加,时间复杂度高,收敛速度慢.对模糊C-均值聚类算法进行了改进,在原有的模糊C-均值聚类算法基础上,引入了物理学中的万有引力思想,提出了一种基于引力改进的模糊聚类算法.实验分析表明,该算法能够较好地克服基于距离的模糊聚类算法仅考虑单一位置关系的缺点,并且在一定程度上降低了时间复杂度,提高了算法的收敛速度,聚类效果较好. 相似文献
6.
针对传统的模糊C均值聚类算法在进行图像分割时对孤立点、噪声点敏感性较强,聚类耗时随图像变大而快速增长等缺陷,基于临近元素空间距离的模糊C均值聚类算法即SFGFCM算法,采用核化的空间距离公式,计算出空间临近像素与考察像素的相似度Sij,然后用邻近像素灰度加权和计算出邻近信息制约图像,并进一步在邻近信息制约图像的灰度级统计的基础上进行聚类。该算法考察了临近像素灰度和位置等信息,并且它们之间取得了很好的平衡;不仅表现出较强的鲁棒性且很好地保留了原图像边缘等细节信息,提高了聚类精度,同时大大缩短了大幅图像的聚类时间。通过在合成图像、医学图像及自然图像上的大量实验,与传统算法对比该算法聚类性能明显提高,在图像分割上体现出了较好的分割效果。 相似文献
7.
针对模糊C-均值(FCM)算法易陷入局部最优值以及对聚类中心和噪声数据敏感问题,提出了一种基于w-距离均值的模糊聚类算法。首先根据数据自身的分布规律,依据样本间距离均值思想确定初始聚类中心,并引入了调衡因子w来调节距离均值阈值;其次为每个样本赋予权值,并利用样本权值修改了聚类中心公式和目标函数公式,提高了算法的抗噪性;最后实验结果验证了所提算法可以有效地解决聚类效果往往受初始聚类中心的影响的问题,避免了局部收敛,增强了抗噪性,准确率和效率较高。 相似文献
8.
9.
模糊C均值(FCM)聚类算法无法识别非凸数据,算法中基于欧式距离的相似性度量只考虑数据点之间的局部一致性特征而忽略了全局一致性特征。提出一种利用密度敏感距离度量创建相似度矩阵的FCM算法。通过近邻传播算法获取粗类数作为最佳聚类数的搜索范围上限,以解决FCM算法聚类数目需要人为预先设定和随机选定初始聚类中心造成聚类结果不稳定的问题。在此基础上,改进最大最小距离算法,得到具有代表性的样本点作为初始聚类中心,并结合轮廓系数自动确定最佳聚类数。基于UCI数据集和人工数据集的实验结果表明,相比经典FCM、K-means和CFSFDP算法,该算法不仅具有识别复杂非凸数据的能力,而且能够在保证聚类性能和稳定性的前提下加快收敛速度。 相似文献
10.
软硬结合的快速模糊C-均值聚类算法的研究 总被引:1,自引:1,他引:1
讨论的是对模糊C-均值聚类方法的改进,在原有的模糊C-均值算法的基础上,提出一种软硬结合的快速模糊C-均值聚类算法。快速模糊C-均值聚类算法是在模糊C-均值聚类算法之前加入一层硬C-均值聚类算法。硬聚类算法能比模糊聚类算法以高得多的速度完成,将硬聚类中心作为模糊聚类中心的迭代初值,从而提高模糊C-均值聚类算法的收敛速度,这对于大量数据的聚类是很有意义的。用数据仿真验证了这种快速模糊C-均值聚类算法比模糊C-均值算法迭代调整过程短,收敛速度快,聚类效果好。 相似文献
11.
模糊kohonen聚类神经网络将模糊隶属度概念应用于一般Kohonen聚类网络的学习和更新策略中,改善了Kohonen聚类网络的性能,是一种快速有效的聚类网络.但在死神经元的处理和收敛速度上还有改进的空间.为了能使网络更好应用于海量数据的聚类问题,对模糊Kohonen聚类网络算法在输出神经元的模糊偏置度、侧抑制模糊隶属度和加权系数提出了三方面改进.同时,对改进的模糊Kohonen聚类网络的有效性进行实例仿真,仿真结果体现了改进算法能有效避免死神经元的出现和提高了网络的聚类速度. 相似文献
12.
13.
14.
15.
16.
17.
一种基于蚁群算法的模糊C均值聚类 总被引:22,自引:0,他引:22
针对模糊C均值(FCM)聚类算法,在选取聚类中心点时采用随机选取易使得迭代过程陷入局部最优解,FCM算法自身并不能确定聚类个数需要人为设定,并在数据分类应用时具有了一定误差的问题,提出了一种基于蚁群算法的FCM聚类算法。该算法根据蚁群聚类算法确定模糊聚类个数和FCM算法的初始聚类中心:利用蚁群算法的全局搜索性、并行计算性等特点避免了聚类陷入局部最优解:仿真结果表明了该算法的有效性。 相似文献
18.
19.
针对模糊聚类算法中数据和运算耗时很长,不适于在线建模与控制的问题,基于模糊聚类型隶属函数和EUM方法,提出了一种新的模糊辨识算法。该方法省去了求解聚类中心的迭代过程,计算时间显著减少。采用该方法对Box—Jenkins煤气炉数据和Mackey—Glass混沌时间序列进行了仿真,结果证明了该方法的有效性。 相似文献
20.
基于核的模糊聚类算法 总被引:2,自引:0,他引:2
在聚类分析中,模糊c-均值算法是应用最广泛的聚类算法之一,针对该算法对初始化敏感,容易陷入局部极小点的缺点,论文提出了一种基于核的模糊聚类算法。在算法中将核方法与模糊可能性算法相结合,将模糊c-均值算法结果作为初始中心,放松了对隶属度归一化的条件,对噪声有更好的处理能力。IRIS数据和人造数据的实验结果表明该算法的有效性。 相似文献