首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
乌伟 《测控技术》2016,35(4):84-88
滑模变结构控制方法因其易实现,鲁棒性强等优点广泛应用于实际控制系统中,讨论了具有积分滑动流形的高阶滑模控制器的设计方法.通过设计含积分滑动流形的高阶滑模面,使系统状态在一阶乃至高阶滑模面上均能达到滑动模态.同时利用高阶滑模面为状态变量设计新的状态空间系统,将原先促使系统状态接近并停留在滑模面上的控制目标,拓展为使高阶滑模状态变量趋近于零的控制目标,并结合最优控制方法来设计等效控制量,利用积分流形设计切换控制的切换面,通过严格证明来证实控制器设计的稳定性.在仿真验证部分采用了一阶倒立摆模型,通过比较常规趋近律滑模控制方法和本文方法的仿真结果,可以得出本文方法在减小系统控制量抖振方面的重要作用和优异效果.  相似文献   

2.
To design an rth (r>2) order sliding mode control system, a sliding variable and its derivatives of up to (r ? 1) are in general required for the control implementation. This paper proposes a reduced‐order design algorithm using only the sliding variable and its derivatives of up to (r ? 2) as the extension of the second‐order asymptotic sliding mode control. For a linear time‐invariant continuous‐time system with disturbances, it is found that a high‐order sliding mode can be reached locally and asymptotically by a reduced‐order sliding mode control law if the sum of the system poles is less than the sum of the system zeros. The robust stability of the reduced‐order high‐order sliding mode control system, including the convergence to the high‐order sliding mode and the convergence to the origin is proved by two Lyapunov functions. Simulation results show the effectiveness of the proposed control algorithm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
二阶动态滑模控制在移动机械臂输出跟踪中的应用   总被引:9,自引:3,他引:6  
针对移动机械臂的输出跟踪问题,结合高阶滑模控制和动态滑模控制的设计思想为其设计了一种二阶动态滑模控制器.首先给出了包括驱动电机动态特性的移动机械臂的简化动态模型,然后通过微分同胚和输入变换将其分解为四个低阶子系统,并给出了其输出跟踪的二阶动态滑模控制器的设计方法.仿真结果表明,所设计的二阶动态滑模控制器不仅能很好地跟踪给定轨迹,而且能有效地削弱滑模控制系统的抖振.  相似文献   

4.
In this paper, the design of first order sliding mode control (SMC) and twisting control based on the reduced order sliding function is proposed for the robust stabilization of an class of uncertain nonlinear single‐input system. This method greatly simplifies the control design as the sliding function is linear, which is based on reduced order state vector. The nonlinear system is represented as a cascade interconnection of two subsystems driving and driven subsystems. Sliding surface and SMC are designed for only the driving subsystem that guarantees the asymptotic stability of the entire system. To show the effectiveness of the proposed control schemes, the simulation results of translational oscillator with rotational actuator are illustrated.  相似文献   

5.
This paper proposes a sliding surface which renders the system dynamics to start directly from itself without a reaching phase. More specifically, the system dynamics is insensitive to matched disturbances/uncertainties throughout the entire system response. The controller design based on reduced‐order subsystem is still preserved. It is different from integral sliding mode in which the design is based on the full order of the system to reach the same objective. The simulation results of its application to a fractional inverted pendulum system is demonstrated.  相似文献   

6.
On discrete-time variable structure sliding mode control   总被引:1,自引:0,他引:1  
The purpose of this paper is to show the limitations of discrete-time variable structure sliding mode control and that the equivalent control must be used in order to have sliding in a neighborhood of the switching surface. Conflicting requirements for the sliding mode controller behavior in the continuous and discrete-time domains are revealed and analyzed. A linear control law for an uncertain discrete-time linear plant, with bounded uncertainties, is analyzed and its superiority over nonlinear controllers is demonstrated. The conclusion of the obtained results is that in the discrete-time variable structure sliding mode controller design, unlike in the continuous-time, the designer may have limited flexibility in selecting controller architectures.  相似文献   

7.
The concept of discrete higher‐order sliding mode has received increased attention in the recent literature. This paper presents an optimal discrete higher‐order sliding mode control for an uncertain discrete LTI system using partial state information, which has been missing in literature. A new technique is proposed to design an optimal time‐varying higher‐order sliding surface and control input through the minimization of a quadratic performance index. Moreover, disturbance estimation technique is utilized to modify the control algorithm to reduce the width of the discrete higher‐order sliding mode band. The proposed algorithm is experimentally validated on a rectilinear plant. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
针对一类具有不确定参数的复杂非线性系统,提出了一种自适应积分滑模控制方法。控制器的设计分两步进行:首先,基于被控对象模型构造一个简化子系统,设计出该子系统的一个全局渐近稳定控制律;然后构造一个积分滑模面,设计自适应积分滑模补偿器以处理系统中含有不确定参数的部分,保证了滑模面的可达性和原系统的闭环稳定性。补偿后,系统的完整自适应控制律由简化子系统的控制律加补偿控制器两部分组成。所提设计方法简单,便于工程实现。最后,通过仿真结果验证了设计方案的有效性。  相似文献   

9.
A continuous sliding mode control with moving sliding surface for nonlinear systems of arbitrary order is presented in this paper. The sliding surface is moved repetitively toward the target sliding surface in order to ensure that the system trajectory is close to the actual surface during the whole control process. The parameters of sliding mode control are tuned by a fuzzy logic. The proposed procedure reduces the time when the system operates in the approaching phase during which the control performance is deteriorated since the system is more susceptible to external disturbances and model uncertainties. The effectiveness of the presented approach is demonstrated on a control of a flexible robot manipulator arm.  相似文献   

10.
This paper presents a path following control design for an autonomous surface vessel. The boat considered presents three degrees of freedom being driven by two independent propellers placed at its stern and is represented by a highly nonlinear underactuated dynamic model. The control objective is to reach and closely follow a pre‐specified trajectory, operating in an environment perturbed by currents and waves. This objective is achieved through a control scheme based on the interaction of guidance laws synthesized by Lyapunov techniques and a high order sliding mode control approach based on the Super Twisting Algorithm. This methodology allows designing robust and simple controllers that avoid chattering effects on sliding surfaces, producing continuous control actions and presenting a reduced computational burden. The control performance is analyzed through representative simulations.  相似文献   

11.
This paper extends the dominant eigenvector-based sliding mode control (SMC) design methodology, which was originally developed for delay-free continuous-time processes with known parameters, to the case of multiple time-delay continuous-time processes with known/unknown parameters. In addition, this paper presents a new prediction-based Chebyshev quadrature digital redesign methodology for indirect design of the digital counterpart of the analog sliding mode controller (ASMC) for multiple time-delay continuous-time transfer function matrices with either a long input delay or a long output delay. An approximated discrete-time model and its corresponding continuous-time model are constructed for multiple time-delay continuous-time stable/unstable dynamical processes with known/unknown parameters, using first the conventional observer/Kalman filter identification (OKID) method. Then, an optimal ASMC is developed using the linear quadratic regulator (LQR) approach, in which the corresponding sliding surface is designed using the user-specified eigenvectors and the scalar sign function. For digital implementation of the proposed non-augmented low-dimensional ASMC, a digital counterpart is designed based on the existing prediction-based digital redesign method and the newly developed prediction-based Chebyshev quadrature digital redesign method. Finally, a non-augmented low dimensional digital observer with a long input or output dead time is constructed for the implementation of the digitally redesigned sliding mode controller, to improve the performances of multiple time-delay dynamical processes. The effectiveness of the proposed method has been verified by means of two illustrative examples.  相似文献   

12.
针对一类非线性仿射系统的控制器设计问题,基于滑模变结构控制理论,提出一种新的控制器设计方法:滑模降阶方法.首先反复运用变结构控制理论对一类n阶的仿射非线性系统构造n-1个微分同胚变换函数和n-1个滑动流形,将初始系统降至一阶系统,并给出了变结构控制律;然后利用当前级与上一级控制输入的映射关系进行n-1次反推运算,即可得到初始系统的控制输入;最后通过仿真算例表明了所提出方法的有效性和可行性.  相似文献   

13.
Presented is a method of smooth sliding mode control design to provide for an asymptotic second‐order sliding mode on the selected sliding surface. The control law is a nonlinear dynamic feedback that in absence of unknown disturbances provides for an asymptotic second‐order sliding mode. Application of the second‐order disturbance observer in a combination with the proposed continuous control law practically gives the second‐order sliding accuracy in presence of unknown disturbances and discrete‐time control update. The piecewise constant control feedback is “smooth” in the sense that its derivative numerically taken at sampling rate does not contain high frequency components. A numerical example is presented.  相似文献   

14.
The research on discrete‐time higher‐order sliding mode has received a considerable attention recently. Systems with unmatched uncertainties are common in practice; however, the existing discrete‐time higher‐order sliding mode control algorithms are designed considering only matched uncertainty. This paper proposes a technique to design discrete‐time higher‐order sliding mode control for an uncertain LTI system in the presence of unmatched uncertainty. The proposed technique is numerically simulated and experimentally validated on an electromechanical rectilinear plant. Various experiments are conducted considering the several operational conditions of electromechanical systems in industries to verify the performance of the proposed controller.  相似文献   

15.
以二阶系统为研究对象,提出一种具有非线性连续时变滑模面的变结构控制器设计方法.用该方法设计的变结构控制系统,系统的初始状态位于滑模面上,通过滑模面斜率的连续变化,能消除系统状态变量到达滑模面的过程,极大地提高对参数摄动和外部干扰的鲁棒性,应用Lyapunov法证明时变滑模面的存在,计算机仿真结果证明该方法的正确性.  相似文献   

16.
分数阶混沌系统的主动滑模同步   总被引:1,自引:0,他引:1  
结合主动控制和滑模控制原理,提出了一个同步分数阶混沌系统的主动滑模控制方法.该方法首先用分数阶积分对所有维状态分量设计一个滑模面,分数阶混沌系统在该滑模面上稳定.然后采用极点配置的方法获得主动滑模控制器中的增益矩阵.应用Lyapunov稳定性理论、分数阶系统稳定理论对所提的控制器的存在性和稳定性分别进行了分析.对分数阶Lorenz系统进行数值仿真,仿真结果验证了该方法的有效性.  相似文献   

17.
非线性仿射控制系统的高阶滑模控制   总被引:9,自引:0,他引:9  
研究非线性仿射系统的高阶滑模控制问题.通过适当的输入及非线性状态变换将系 统分解为一个关于切换变量及其高阶导数的低阶线性子系统和一个关于滑模的低阶非线性子 系统,进而给出了其高阶滑模控制器的设计方法.最后,对两轮驱动的非完整移动机器人进行 了数值仿真,结果表明高阶滑模控制在抖振减弱方面确实具有一定的作用.  相似文献   

18.
针对被控对象的参数时变和外部扰动问题,本文融合神经网络的万能逼近能力和自适应控制技术,并结合分数阶微积分理论,提出了基于神经网络和自适应控制算法的分数阶滑模控制策略.本文采用等效控制的方法设计滑模控制律,并利用神经网络的万能逼近能力估测控制律的变化,结合自适应控制算法和分数阶微积分理论抑制传统滑模控制系统的抖震,同时根据Lyapunov稳定性理论分析了系统的稳定性,最后给出了实验结果.实验结果表明,本文提出的基于神经网络和自适应控制算法的分数阶滑模控制系统,能保持滑模控制器对系统外部扰动和参数变化鲁棒性的同时,也能有效地抑制抖震,使得系统获得较高的控制性能.  相似文献   

19.
This paper discusses overlapping decentralized sliding mode controller design for large-scale continuous-time systems. Design issues, like connective reachability of the sliding manifold and the stability of the sliding mode equations in the expanded and original state spaces are examined. Application of the results to automatic generation control is also discussed briefly.  相似文献   

20.
This paper studies the super‐twisting algorithm (STA) for adaptive sliding mode design. The proposed method tunes the two gains of STA on line simultaneously such that a second order sliding mode can take place with small rectifying gains. The perturbation magnitude is obtained exactly by employing a third‐order sliding mode observer in opposition to the conventional approximations by using a first order low pass filter. While driving the sliding variable to the sliding mode surface, one gain of the STA automatically converges to an adjacent area of the perturbation magnitude in finite time. The other gain is adjusted by the above gain to guarantee the robustness of the STA. This method requires only one parameter to be adjusted. The adjustment is straightforward because it just keeps increasing until it fulfills the convergence constraints. For large values of the parameter, chattering in the update law of the two gains is avoided by employing a geometry based backward Euler integration method. The usefulness is illustrated by an example of designing an equivalent control based sliding mode control (ECBC‐SMC) with the proposed adaptive STA for a perturbed LTI system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号