首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The effects of a series of structurally-dissimilar sigma site ligands were examined on high voltage-activated Ca2+ channel activity in two preparations of cultured hippocampal pyramidal neurones. 2. In mouse hippocampal neurones under whole-cell voltage-clamp, voltage-activated Ca2+ channel currents carried by barium ions (IBa) were reduced with the rank order (IC50 values in microM): 1S,2R-(-)-cis-N-methyl-N-[2-(3,4-dichlorophenyl)ethyl]- 2-(1-pyrrolidinyl)cyclohexylamine (7.8) > rimcazole (13) > haloperidol (16) > ifenprodil (18) > opipramol (32) > carbetapentane (40) = 1-benzylspiro[1,2,3,4-tetrahydronaphthalene-1,4-piperidine] (42) > caramiphen (47) > dextromethorphan (73). At the highest concentrations tested, the compounds almost abolished IBa in the absence of any other pharmacological agent. 3. The current-voltage characteristics of the whole-cell IBa were unaffected by the test compounds. The drug-induced block was rapid in onset and offset, with the exceptions of carbetapentane and caramiphen where full block was achieved only after two to three voltage-activated currents and was associated with an apparent increase in the rate of inactivation of IBa. 4. In rat hippocampal neurones loaded with the Ca(2+)-sensitive dye Fura-2, rises in intracellular free Ca2+ concentration evoked by transient exposure to 50 mM K(+)-containing medium, either in the absence or in the presence of 10 microM nifedipine (to block L-type high voltage-activated Ca2+ channels), were also reversibly attenuated by the sigma ligands. The rank order potencies for the compounds in these experimental paradigms were similar to that observed for blockade of IBa in the electrophysiological studies. 5. These results indicate that, at micromolar concentrations, the compounds tested block multiple subtypes of high voltage-activated Ca2+ channels. These actions, which do not appear to be mediated by high-affinity sigma binding sites, may play a role in some of the functional effects previously described for the compounds.  相似文献   

2.
In order to study the different mechanisms of dynorphin spinal analgesia and neurotoxicity at low and high doses, the effects of various concentrations of dynorphin A-(1-17) on the free intracellular Ca2+ concentration ([Ca2+]i) in the cultured rat spinal neurons were studied using single cell microspectrofluorimetry. While dynorphin A-(1-17) 0.1-100 microM had no significant effect on basal [Ca2+]i, dynorphin A-(1-17) 0.1 and 1 microM significantly decreased the high KCl-evoked peak [Ca2+]i by 94% and 83% respectively. Dynorphin A-(1-17) 10 and 100 microM did not affect the peak [Ca2+]i following K+ depolarization, but in all these neurons there was a sustained and irreversible rise in [Ca2+]i following high-K+ challenge. Pretreatment with the specific kappa-opioid receptor antagonist nor-binaltorphimine 10 microM, but not the competitive NMDA receptor antagonist, DL-2-amino-5-phosphonovalerate (APV) 10 microM, significantly blocked the inhibitory effect of dynorphin A-(1-17) 0.1 microM on peak [Ca2+]i. However, APV 10 microM and nor-binaltorphimine 10 microM significantly antagonized the sustained rise in [Ca2+]i induced by a high concentration of dynorphin A-(1-17) 10 microM. Furthermore, in the presence, and following the addition, of increasing concentrations of dynorphin A-(1-17) (0.1, 1, 10 and 100 microM), the high concentrations of dynorphin A-(1-17) failed to produce a sustained rise in peak [Ca2+]i. These results suggested that dynorphin exerted a dualistic modulatory effect on [Ca2+]i in cultured rat spinal neurons, inducing a sustained and irreversible intracellular Ca2+ overload via activation of both NMDA and kappa-opioid receptors at higher concentrations, but inhibiting depolarization-evoked Ca2+ influx via kappa-opioid but not NMDA receptors at lower concentrations. Serial addition of graded concentrations of dynorphin A-(1-17) prevented the effect of high concentrations of dynorphin A-(1-17) on [Ca2+]i.  相似文献   

3.
1. The block by ifenprodil of voltage-activated Ca2+ channels was investigated in intracellular free calcium concentration ([Ca2+]i) evoked by 50 mM K+ (high-[K+]o) in Fura-2-loaded rat hippocampal pyramidal neurones in culture and on currents carried by Ba2+ ions (IBa) through Ca2+ channels in mouse cultured hippocampal neurones under whole-cell voltage-clamp. The effects of ifenprodil on voltage-activated Ca2+ channels were compared with its antagonist actions on N-methyl-D-aspartate- (NMDA) evoked responses in the same neuronal preparations. 2. Rises in [Ca2+]i evoked by transient exposure to high-[K+]o in our preparation of rat cultured hippocampal pyramidal neurones are mediated predominantly by Ca2+ flux through nifedipine-sensitive Ca2+ channels, with smaller contributions from nifedipine-resistant, omega-conotoxin GVIA-sensitive Ca2+ channels and Ca2+ channels sensitive to crude funnel-web spider venom (Church et al., 1994). Ifenprodil (0.1-200 microM) reversibly attenuated high-[K+]o-evoked rises in [Ca2+]i with an IC50 value of 17 +/- 3 microM, compared with an IC50 value of 0.7 +/- 0.1 microM for the reduction of rises in [Ca2+]i evoked by 20 microM NMDA. Tested in the presence of nifedipine 10 microM, ifenprodil (1-50 microM) produced a concentration-dependent reduction of the dihydropyridine-resistant high-[K+]o-evoked rise in [Ca2+]i with an IC50 value of 13 +/- 4 microM. The results suggest that ifenprodil blocks Ca2+ flux through multiple subtypes of high voltage-activated Ca2+ channels. 3. Application of the polyamine, spermine (0.25-5 mM), produced a concentration-dependent reduction of rises in [Ca2+]i evoked by high-[K+]o. The antagonist effects of ifenprodil 20 micro M on high-[K+]0-evoked rises in [Ca2+]. were attenuated by spermine 0.25 mM but not by putrescine 1 or 5 mM. In contrast,spermine 0.1 mM increased rises in [Ca2+]i evoked by NMDA and enhanced the ifenprodil (5 micro M) block of NMDA-evoked rises in [Ca2+]i.4. Similar results were obtained in mouse cultured hippocampal pyramidal neurones under whole-cell voltage-clamp. Ifenprodil attenuated both the peak and delayed whole-cell IB. with an IC% value of 18 +/- 2 micro M, whilst it attenuated steady-state NMDA-evoked currents with an IC50 of 0.8 +/- 0.2 micro M. Block of IBa by ifenprodil 10 JaM was rapid in onset, fully reversible and occurred without change in thecurrent-voltage characteristics of Ba. The ifenprodil block of IBa was enhanced on membrane depolarization and was weakly dependent on the frequency of current activation. Spermine 0.1 mM potentiated control NMDA-evoked currents but attenuated IB,. In agreement with the microspectrofluorimetric studies, co-application of spermine produced a small enhancement of the inhibitory effect of ifenprodil 10 micro M on NMDA-evoked responses whereas the reduction of I4 by ifenprodil 10 micro M in the presence of spermine was less than expected if the inhibitory effects of ifenprodil and spermine on IBa were simply additive.5. The results indicate that ifenprodil blocks high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones. Although the Ca2+ channel blocking actions of ifenprodil are observed at higher concentrations than those associated with NMDA antagonist activity, Ca2+ channel blockade may contribute, at least in part, to the established neuroprotective and anticonvulsant properties of the compound.  相似文献   

4.
Voltage-activated Ca2+ channels represent a major pathway of Ca2+ entry into neurones. The regulation of the expression of functional Ca2+ channels thus plays a central role in neuronal differentiation. To study the influence of afferent innervation on Ca2+ current expression, we compared HVA Ca2+ currents in two categories of cultured neocortical neurones that showed pronounced differences in synaptic innervation density. Neurones strongly innervated by a presynaptic explant had a two-fold greater HVA Ca2+ current density than neurones not innervated by explant fibres. Chronic blockade of synaptic activity did not affect HVA Ca2+ current density in innervated neurones. Our results thus suggest an activity-independent regulation of HVA Ca2+ current expression by afferent innervation.  相似文献   

5.
6.
The effects of Selegiline hydrochloride (Selegiline HCl) on the intracellular Ca2+ contents of primarily cultured rat striatal, mesencephalic neuronal cells and PC-12 cells were examined by the use of a Ca2+ imaging analyzer. In the former two cell types, Selegiline HCl (10(-5)-10(-6) M) induced a transient inflow of extracellular Ca2+ through the voltage-dependent N-type Ca2+ channel. In addition, all cells indicating an increase in the intracellular Ca2+ content were found to be catecholaminergic neurons which showed a positive reaction with anti-tyrosine hydroxylase antibodies. Furthermore, a transient intracellular influx of Ca2+ was observed in the NGF-pretreated PC-12 cells. From these results, it is suggested that Selegiline HCl elicits various functions, including antioxidation, activation of neurotrophic factor biosynthesis and neuronal protection probably via an unidentified specific proteins of tyrosine hydroxylase-positive neurons.  相似文献   

7.
Increasing extracellular pH from 7.4 to 8.5 caused a dramatic increase in the time required to recover from a glutamate (3 microM, for 15 s)-induced increase in intracellular Ca2+ concentration ([Ca2+]i) in indo-1-loaded cultured cortical neurons. Recovery time in pH 7.4 HEPES-buffered saline solution (HBSS) was 126 +/- 30 s, whereas recovery time was 216 +/- 19 s when the pH was increased to 8.5. Removal of extracellular Ca2+ did not inhibit the prolongation of recovery caused by increasing pH. Extracellular alkalinization caused rapid intracellular alkalinization following glutamate exposure, suggesting that pH 8.5 HBSS may delay Ca2+ recovery by affecting intraneuronal Ca2+ buffering mechanisms, rather than an exclusively extracellular effect. The effect of pH 8.5 HBSS on Ca2+ recovery was similar to the effect of the mitochondrial uncoupler carbonyl cyanide p-(trifluoromethoxyphenyl)hydrazone (FCCP; 750 nM). However, pH 8.5 HBSS did not have a quantitative effect on mitochondrial membrane potential comparable to that of FCCP in neurons loaded with a potential-sensitive fluorescent indicator, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine++ + iodide (JC-1). We found that the effect of pH 8.5 HBSS on Ca2+ recovery was completely inhibited by the mitochondrial Na+/Ca2+ exchange inhibitor CGP-37157 (25 microM). This suggests that increased mitochondrial Ca2+ efflux via the mitochondrial Na+/Ca2+ exchanger is responsible for the prolongation of [Ca2+]i recovery caused by alkaline pH following glutamate exposure.  相似文献   

8.
The diversity of high voltage-activated (HVA) Ca2+ channels in rat CNS neurones was investigated with the nystatin perforated patch recording configuration. The neurones were freshly dissociated from rat substantia nigra, ventromedial hypothalamus, tuberomammillary nucleus, nucleus tractus solitarius, hippocampal CA1 region and cerebellum. Five different types of HVA Ca2+ channels were distinguished pharmacologically; dihydropyridine sensitive L-type, omega-conotoxin-GVIA sensitive N-type, omega-agatoxin-IVA sensitive P-type, omega-conotoxin-MVIIC sensitive Q-type, and R-type which is insensitive to these organic Ca2+ antagonists. The results showed clearly that the five subtypes of HVA Ca2+ channels differ considerably in their distribution among various CNS regions.  相似文献   

9.
Using fluorescence-activated cell sorting (FACS), we have studied the effect of the differentiation-inducing factor (DIF) on cellular Ca2+ in Dictyostelium discoideum. We have shown previously that freshly starved or postaggregation amoebae are heterogenous with respect to the amounts of cellular Ca2+ that they contain; the L or "low Ca2+" class exhibits a prespore tendency and the H or "high Ca2+" class exhibits a prestalk tendency. Upon adding DIF, within 2 min there is an approximately twofold increase in the relative fraction of amoebae falling in the H class. A major part of the increase is caused by Ca2+ influx from the extracellular medium. Therefore a rise in the level of cellular Ca2+ is an early step in the signal transduction pathway following stimulation by DIF. Also, in parallel with the cellular heterogeneity in respect of Ca2+ content, there is a heterogeneity in the response to DIF, which appears to be restricted to L cells.  相似文献   

10.
The presence and distribution of intracellular Ca2+ release pathways in olfactory bulb neurons were studied in dissociated cell cultures. Histochemical techniques and imaging of Ca2+ fluxes were used to identify two major intracellular Ca2+ release mechanisms: inositol 1, 4,5-triphosphate receptor (IP3R)-mediated release, and ryanodine receptor-mediated release. Cultured neurons were identified by immunocytochemistry for the neuron-specificmarker beta-tubulin III. Morphometric analyses and immunocytochemistry for glutamic acid-decarboxylase revealed a heterogeneous population of cultured neurons with phenotypes corresponding to both projection (mitral/tufted) and intrinsic (periglomerular/granule) neurons of the in vivo olfactory bulb. Immunocytochemistry for the IP3R, and labeling with fluorescent-tagged ryanodine, revealed that, irrespective of cell type, almost all cultured neurons express IP3R and ryanodine binding sites in both somata and dendrites. Functional imaging revealed that intracellular Ca2+ fluxes can be generated in the absence of external Ca2+, using agonists specific to each of the intracellular release pathways. Local pressure application of glutamate or quisqualate evoked Ca2+ fluxes in both somata and dendrites in nominally Ca2+ free extracellular solutions, suggesting the presence of IP3-dependent Ca2+ release. These fluxes were blocked by preincubation with thapsigargin and persisted in the presence of the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. Local application of caffeine, a ryanodine receptor agonist, also evoked intracellular Ca2+ fluxes in the absence of extracellular Ca2+. These Ca2+ fluxes were suppressed by preincubation with ryanodine. In all neurons, both IP3- and ryanodine-dependent release pathways coexisted, suggesting that they interact to modulate intracellular Ca2+ concentrations.  相似文献   

11.
BACKGROUND: Complex branched muscle fibers are frequently observed in the muscles of mdx mutant mice and/or in damaged muscles. To investigate whether the complex branched fibers were present in the compensatory hypertrophied muscles of rats, we examined the morphological changes in these muscles. METHODS: We examined the hypertrophied plantaris (PLA) muscle of the Wistar male rats, prepared by surgical ablation of synergistic muscles. The muscle was examined using three-dimensional analysis with scanning electron microscopy, immunohistochemical detection of proliferating cells using 5-bromo-2'-deoxyuridine (BrdU) and histological and histochemical characterization. Studies were performed at 48 hours, 2, 4, 6, 10, and 15 weeks after surgical preparation. RESULTS: The muscle hypertrophy ratio (muscle weight relative to the contralateral intact control side), gradually increased from 2 to 10 weeks, and the peak value (48.6%) occurred at the 10th week. The total number of fibers did not change significantly at any time interval. However, the number of branched muscle fibers increased significantly (P < 0.05) after 6 weeks, and accounted for about 2.5% of the total fibers at the 15th week. Most branched fibers showed complex features resembling the "anastomosing syncytial reticulum" described in myopathic animals. The fibers were observed mainly in the middle and distal portions of the PLA muscle. The proportion and distribution of proliferating cells in the entire PLA muscle corresponded with the distribution of the complex branched fibers. These results were also observed in muscle tissues prepared for histological and histochemical examination. CONCLUSIONS: The presence of a large proportion of complex branched fibers in a limited segment of the compensatory hypertrophied muscle suggests that this hypertrophy model represents a pathological and/or pathophysiological hypertrophy model rather than a normal physiological process.  相似文献   

12.
Stimulation of human submandibular gland cells with carbachol, inositol trisphosphate (IP3), thapsigargin, or tert-butylhydroxyquinone induced an inward current that was sensitive to external Ca2+ concentration ([Ca2+]e) and was also carried by external Na+ or Ba2+ (in a Ca2+-free medium) with amplitudes in the order Ca2+ > Ba2+ > Na+. All cation currents were blocked by La3+ and Gd3+ but not by Zn2+. The IP3-stimulated current with 10 microM 3-deoxy-3-fluoro-D-myo-inositol 1,4,5-triphosphate and 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid in the pipette solution, showed 50% inactivation in <5 min and >5 min with 10 and 1 mM [Ca2+]e, respectively. The Na+ current was not inactivated, whereas the Ba2+ current inactivated at a slower rate. The protein kinase inhibitor, staurosporine, delayed the inactivation and increased the amplitude of the current, whereas the protein Ser/Thr phosphatase inhibitor, calyculin A, reduced the current. Thapsigargin- and tert-butylhydroxyquinone-stimulated Ca2+ currents inactivated faster. Importantly, these agents accelerated the inactivation of the IP3-stimulated current. The data demonstrate that internal Ca2+ store depletion-activated Ca2+ current (ISOC) in this salivary cell line is regulated by a Ca2+-dependent feedback mechanism involving a staurosporine-sensitive protein kinase and the intracellular Ca2+ pump. We suggest that the Ca2+ pump modulates ISOC by regulating [Ca2+]i in the region of Ca2+ influx.  相似文献   

13.
The antiallergic drugs astemizole and norastemizole inhibit exocytosis in mast cells, which might be relevant for their therapeutic action. From previous studies, it appeared that the drugs inhibited 45Ca2+ influx. Here, we present a more detailed study on the effects of astemizole and norastemizole on Ca2+ fluxes. Fura-2-loaded rat basophilic leukemia (RBL-2H3) cells were activated through the high-affinity receptor for IgE (FcepsilonRI) with antigen or by the endoplasmatic reticulum ATPase inhibitor thapsigargin, bypassing direct FcepsilonRI-related events. It appeared that astemizole (>15 microM), in contrast to norastemizole, showed a dual effect on intracellular calcium concentration ([Ca2+]i): a rise in intracellular calcium concentration was induced, which originated in the release of intracellular Ca2+ stores, whereas Ca2+ influx via store-operated Ca2+ (SOC) channels was inhibited. Ca2+ influx was further characterized using Ba2+ influx, whereas processes in the absence of Ca2+ influx were studied using Ni2+ or EGTA. It was concluded that the drugs most likely affect the store-operated Ca2+ channels in RBL cells directly. The two effects of astemizole on Ca2+ fluxes had opposing influences on exocytosis, thereby accounting for the biphasic effect of increasing astemizole concentration on mediator release in RBL cells.  相似文献   

14.
The relationship between the agonist-sensitive Ca2+ pool and those discharged by the Ca2+ -ATPase inhibitor thapsigargin (TG) were investigated in canine tracheal smooth muscle cells (TSMCs). In fura-2-loaded TSMCs, 5-hydroxytryptamine (5-HT) stimulated a rapid increase in intracellular Ca2+ ([Ca2+]i), followed by a sustained plateau phase that was dependent on extracellular Ca2+. In such cells, TG produced a concentration-dependent increase in [Ca2+]i, which remained elevated over basal level for several minutes and was substantially attenuated in the absence of extracellular Ca2+. Application of 5-HT after TG demonstrated that the TG-sensitive compartment partly overlapped the 5-HT-sensitive stores. Pre-treatment of TSMCs with TG significantly inhibited the increase in [Ca2+]i induced by 5-HT in a time-dependent manner. Similar results were obtained with two other Ca2+ -ATPase inhibitors, cyclopiazonic acid and 2,5-di-t-butylhydroquinone. Although these inhibitors had no effect on phosphoinositide hydrolysis, Ca2+ -influx was stimulated by these agents. These results suggest that depletion of the agonist-sensitive Ca2+ stores is sufficient for activation of Ca2+ influx. Some characteristics of the Ca2+ -influx activated by depletion of internal Ca2+ stores were compared with those of the agonist-activated pathway. 5-HT-stimulated Ca2+ influx was inhibited by La3+, membrane depolarisation, and the novel Ca2+ -influx blocker 1-?beta-[3-(4-methoxyphenyl) propoxy]-4-methoxyphenethyl?-1H-imidazole hydrochloride (SKF96365). Likewise, activation of Ca2+ influx by TG also was blocked by La3+, membrane depolarisation, and SKF96365. These results suggest that (1) in the absence of PI hydrolysis, depletion of the agonist-sensitive internal Ca2+ stores in TSMCs is sufficient for activation of Ca2+ influx, and (2) the agonist-activated Ca2+ influx pathway and the influx pathway activated by depletion of the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool are indistinguishable.  相似文献   

15.
Organotypic cultured slices of the rat hippocampus undergo synaptic reorganization. Besides the establishment of reciprocal connections between area CA1 and the dentate gyrus (DG), collateral excitatory connections between granule cells are formed which are similar to those appearing in several epilepsy models and in the DG from patients with temporal lobe epilepsy. We studied the characteristics of epileptiform activity induced by low Mg2+ perfusion in cultured hippocampal slices using extra- and intracellular recordings. With low Mg2+ perfusion synchronous seizure like events (SLEs) were readily observed in the DG and areas CA3 and CA1. Also, the isolated DG was able to display seizure like activity. Intracellular recordings revealed long lasting depolarization shifts in granule cells of the DG and pyramidal cells of areas CA3 and CA1. The SLEs, lasting 2-3 s, could be recorded for at least 3 h in areas CA1 and CA3. However, approximately an hour after perfusion with low Mg2+, the epileptiform activity disappeared in the DG and responses to single pulse hilar stimulation progressively deteriorated. These responses returned to control values 1 week after reincubating the cultures. Interestingly, no deterioration of stimulus induced responses was observed in the isolated DG after exposure to low Mg2+.  相似文献   

16.
The ability of cell adhesion molecules (CAMs) to transduce cell surface signals into intracellular responses is critical for developing neurons, particularly during axonal pathfinding and targeting. It has been suggested that different CAMs can promote neuronal outgrowth via activation of common neuronal CAM-specific second-messenger pathways, although the elements involved in this cascade could differ. Limbic system-associated membrane protein (LAMP), a member of the Ig superfamily, is a molecule that promotes cell adhesion and neurite outgrowth from specific populations of fetal neurons. In the present study, we show that LAMP can induce several types of calcium (Ca2+) signals. Neurite outgrowth is promoted if fetal hippocampal neurons are grown on lamp-transfected CHO cells. This LAMP-induced outgrowth of neurons is mediated in part through activation of L-type Ca channels. Application of soluble LAMP to cultures of fetal hippocampal neurons caused a sustained (up to 60 min) elevation of intracellular Ca2+ as measured by fluo-3 fluorescence on a confocal microscope. The number of responding hippocampal neurons was initially low, but increased with age in culture and the [Ca2+]i elevation was only partially decreased by an L-type Ca(2+)-channel blocker. In contrast, at all times in culture, only a small fraction of neurons from visual cortex responded to LAMP application and only with transient elevation of cytosolic Ca2+ (< 15 min). Based on these observations, LAMP appears to function primarily through homophilic interactions and acts in part by modulating intracellular Ca2+ levels during neurite outgrowth by increasing the Ca2+ influx through L-type calcium channels, but has additional effects on intracellular Ca2+ signaling at later developmental stages.  相似文献   

17.
It has been assumed that oxidative damage, including formation of 8-hydroxydeoxyguanosine (8-OHdG) adducts in kidney DNA due to potassium bromate (KBrO3), a renal carcinogen to both sexes of rats, is involved in its mechanisms of tumor induction. However, despite the presumed existence of a repair enzyme(s) for 8-OHdG, there have been no reports demonstrating the changes in adduct levels during medium- or long-term exposure. To elucidate the actual kinetics regarding this parameter during the early stages of KBrO3 carcinogenesis, we measured 8-OHdG levels in kidney DNA together with cell proliferation in renal tubules in both sexes of rats receiving KBrO3 at a dose of 500 ppm in the drinking water for 1, 2, 3, 4, and 13 weeks. Rapid elevation of 8-OHdG levels was noted in treated male rats which persisted until the end of the experiment. Increased cell proliferation in the proximal convoluted tubules was also observed throughout the experimental period, concomitant with alpha2mu-globulin accumulation. Increase in 8-OHdG levels in treated females first became apparent 3 weeks after the start of exposure, with cell proliferation only elevated at the 13-week time point. The present study, employing the same route and dose of KBrO3 known to cause tumors, strongly suggested the requirement of persistent increase of 8-OHdG for neoplastic conversion. Moreover, a clear sex difference in susceptibility to generation of oxidative stress in kidney DNA was found, in addition to alpha2mu-globulin-dependent variation in cell proliferation in the renal tubules.  相似文献   

18.
OBJECTIVE: To evaluate the risk and efficacy of pulmonary lobectomy in dogs with pneumonia. DESIGN: Retrospective study. ANIMALS: 59 dogs with pneumonia. PROCEDURE: Review of medical records and telephone conversations. RESULTS: 54.2% of dogs had resolution of pneumonia after lobectomy, 20.3% died in the perioperative period, and 25.4% survived the perioperative period but pneumonia did not resolve. Pneumonia was caused by bacteria (25 dogs), fungi (12), foreign bodies (8), parasites (1), viruses (1), and allergies (1). In 11 dogs, the etiologic agent was not isolated. Bacterial or fungal pneumonias were significantly less likely to resolve compared with foreign body pneumonia or when an etiologic agent was not isolated. Perioperative mortality rate increased significantly with an increase in number of pulmonary lobes removed. Complications during surgery significantly increased perioperative mortality rate. Surgical era (1972 to 1983 vs 1984 to 1994) was a significant predictor of mortality, with the odds of dying in the perioperative period being 11 times greater between 1972 to 1983. The odds of failure to resolve pneumonia was 3 times greater during 1972 to 1983. CLINICAL IMPLICATIONS: Number of pulmonary lobes removed and complications during surgery significantly affect perioperative mortality rate. Identification of etiologic agents may help in predicting dogs likely to resolve pneumonia after surgery.  相似文献   

19.
The effects of four glutamate receptor antagonists on alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)- and N-methyl-D-aspartate (NMDA)-responses were evaluated using both in vitro and in vivo electrophysiological techniques: whole cell patch-clamp recordings from cultured mouse cortical neurones and microiontophoresis in the rat hippocampus. The compounds tested were NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline), GYKI 52466 (1-(4-amino-phenyl)-4-methyl-7,8-methyl-endioxyl-5H-2,3-benzodiaze pine), PNQX (pyrido[3, 4-f]quinoxaline-2,3-dione, 1,4,7,8,9,10-hexahydro-9-methyl-6-nitro-, methanesulfonate), NS377 (7-ethyl-5-phenyl-1,6,7,8-tetrahydro-1,7-diaza-as-indacene-2 ,3-dione), and MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenz(a,d)cycloheptene-5,10-imine hydrogen maleate). In vitro, the IC50 values (in microM) for inhibition of AMPA-evoked inward currents were approximately 0.4 for NBQX, approximately 7.5 for GYKI 52466, approximately 1 for PNQX and approximately 15 for NS377. PNQX and NS377 also inhibited NMDA-induced currents with IC50 values at approximately 5 and approximately 18 microM, respectively, while NBQX at 60 microM and GYKI 52466 at 100 microM had only weak effects. The ED50 values in micromol/kg i.v. for inhibition of AMPA-evoked hippocampal neuronal spike activity in vivo were approximately 32 for NBQX, approximately 19 for GYKI 52466, approximately 17 for PNQX and approximately 11 for NS377 with efficacy values (maximal inhibition) between 71% and 81%. The ED50 values (in [Lmol/kg i.v.) and efficacy values for inhibition of NMDA-evoked hippocampal neuronal spike activity were approximately 28 with an efficacy of 61% for NBQX, approximately 16 with 35% for PNQX and approximately 6 with 61% for NS377. GYKI 52466 did not significantly affect NMDA responses, whereas MK-801 showed NMDA specificity in vivo.  相似文献   

20.
ATP activated the K+ channel responsible for outwardly rectifying currents via a P2Y purinoceptor linked to a pertussis toxin-insensitive G-protein in cultured rat spinal neurons. The evoked currents were inhibited by a selective protein kinase C inhibitor, GF109203X, whereas a phospholipase C inhibitor, neomycin had no effect. These indicate that the currents are regulated by phospholipase C-independent protein kinase C activation. In addition, ATP enhanced intracellular free Ca2+ concentration. The increase in intracellular free Ca2+ concentration was inhibited by a broad G-protein inhibitor, GDP beta S, but not affected by neomycin or an inositol 1,4,5-triphosphate receptor antagonist, heparin, suggesting that the cytosolic Ca2+ mobilization is regulated by a mechanism independent of a phospholipase C-mediated phosphatidylinositol signaling. These results, thus, demonstrate that ATP has dual actions on the coupled K+ channel and cytosolic Ca2+ release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号