共查询到18条相似文献,搜索用时 93 毫秒
1.
概率主元分析(PPCA)已广泛应用于工业过程监测.然而,PPCA法仅构造了生产过程的静态线性关系,处理具有较强动态特性的实际工业生产过程效果较差.为此提出动态概率主元分析(DPPCA)法,对经过时谱扩展后的变量数据阵,通过期望最大化(EM)算法建立生成模型,从而将静态PPCA推广到动态多变量过程.最后将此法应用于TE过程的仿真研究,结果表明该法有效. 相似文献
2.
3.
主元分析(principal component analysis)是一种多元统计技术,在过程监控和故障诊断中具有广泛的应用。针对过程监控中数据量大的特点,提出一种稀疏主元分析(sparse principal component analysis)方法,通过引入lasso约束函数,构建稀疏主元分析的框架,将PCA降维问题转化为回归最优化问题,从而求解得到稀疏化的主元,并提高了主元模型的抗干扰能力。由于稀疏后主元相关的数据量减少,利用数据建立过程监控模型,减少了计算量,并缩短了计算时间,进而提高了监控的实时性。利用田纳西伊斯特曼过程(TE processes)进行实验仿真,并与传统的主元分析方法进行对比研究。结果表明,新提出的稀疏主元分析方法在计算效率和监控实时性上均优于传统的主元分析方法。 相似文献
4.
概率神经网络(PNN)-径向基网络的重要变形,它的学习速发快,很适合于故障检测问题,但是当网络输入样本过大时,网络的计算就会很复杂,计算速度就会很缓慢.本文提出用主元分析(PCA)对过程数据进行降维,然后将处理过的数据作为网络输入,这样使网络的计算速度得到了提高.最后将提出的方法用于田纳西伊斯曼过程(Tennessee... 相似文献
5.
基于改进主元分析方法的化工生产过程的故障检测 总被引:1,自引:0,他引:1
针对化工生产过程中出现的对于过程影响较小的故障,提出一种改进主元分析方法,该方法引入了主元子空间之间的差别的概念.仿真研究中,将该方法与传统的主元分析方法同时应用于TE过程中,结果表明改进主元分析方法比传统的主元分析方法(PCA)能更好的检测出对于过程影响较小的故障. 相似文献
6.
肖应旺 《小型微型计算机系统》2011,32(7)
针对过程工业数据中所含的噪声和干扰信号、过程工业的非线性及基于主元分析(Principal Component Analysis,PCA)的统计性能监控法由于不用过程机理模型的信息从而对故障诊断问题难以在理论上作系统分析的缺陷,提出基于小波变换核主元分析和多支持向量机的过程监控方法,该方法首先采用基于小波变换的收缩阈值去噪法对建模数据进行预处理,以有效抑制过程数据中所含的噪声和干扰信号,然后利用核主元分析来进行故障特征的提取,从而提高非线性统计过程监控的准确性;最后提出多支持向量机用来对故障的来源进行分类,以避免求解核主元空间到原始空间的逆映射.将该方法应用到对TE(Tennessee Eastman,TE)过程的监控,表明了所提出方法的有效性,为过程的监控和故障诊断提供了一个新的方法. 相似文献
7.
8.
针对变负荷的多工况过程,提出了一种基于分段主元分析的监控方法。对于稳态工况,直接利用历史数据建立不同负荷下的主元监控模型。对于工况之间的过渡过程,根据先验知识可将其划分为跟踪时段和调节时段。在两大时段内分别将训练数据细分为多个子时段,进而在每一子时段内设定参考轨迹,利用训练数据与参考轨迹的残差建立主元监控模型,并采用改进的层次聚类算法合并特性相近的时段。在线监控时,根据负荷设定信息判断过程所处的工况,再选择相应的主元模型进行监控。在Alstom气化炉中的应用结果表明,该算法不仅能够避免传统多模型监控方法在工况过渡时出现的大量误警,也能在过渡过程中实现准确的故障检测。 相似文献
9.
传统的多向主元分析(MPCA)已广泛应用于监视多变量间歇过程。在MPCA算法中,三维的间歇过程数据需要转换为高维的二维向量,导致计算量和存储空间大,同时不可避免地丢失一些重要信息。因此,提出一种新的基于二维主元分析(2DPCA)的故障诊断方法。由于每个批次的间歇过程数据是一个二维向量(矩阵),应用以各个批次矩阵为分析对象的2DPCA算法,避免矢量化,存储空间和存储需求小;另外,2DPCA采用各个批次的协方差的平均值来进行建模,能够更加准确地反映出不同类型的故障,在一定程度上增强了故障诊断的准确性。半导体工业实例的监视结果说明,2DPCA方法优于MPCA。 相似文献
10.
基于核主元分析–主元分析的多阶段间歇过程故障监测与诊断 总被引:1,自引:0,他引:1
具有过渡特性的多阶段间歇过程故障监测是一个复杂的问题,既需要考虑稳定阶段下的故障监测,也需要考虑不同阶段间的过渡故障监测.为克服传统硬划分方法导致误警和漏报率高的缺陷,同时也为实现更加精确、有效的故障监测与诊断,提出一套完整的基于核主元分析-主元分析(KPCA-PCA)的多阶段间歇过程故障监测与诊断策略.该方法依据数据相似度实现阶段划分,定义模糊隶属度辨识相邻阶段间的过渡,最后对稳定阶段和过渡过程分别建立具有时变协方差的PCA和KPCA故障监测与诊断模型.通过对青霉素发酵过程的仿真平台及工业应用研究表明,该方法具有更可靠的监控性能,能及时、准确的检测出过程中存在的异常情况. 相似文献
11.
12.
如何有效实现降维是现代成像光谱仪辨识地物类别的一个难点所在。该文在已知高光谱图像地物类别数的情况下,提出了一种采用混合最小描述长度(MMDL)模型选择准则确定高光谱图像本征维数的方法。该方法在期望最大化算法框架下同时实现混合PPCA降维和聚类,并根据MMDL准则确定数据降维维数,可以得到数据在概率意义下的精确的降维表征。仿真数据和真实数据进行的比较实验表明,该方法能精确地选择数据的本征维数。 相似文献
13.
郭辉 《数字社区&智能家居》2007,3(14):501-502
为了解决多变量系统的各个变量之间往往相互影响,且一般不能严格服从高斯分布的问题,采用ICA方法时正常状态下观测的数据进行分析处理,从中提取出统计独立的独立分量,为简化后续分析,对得到的独立分量进行筛选、划分,并分别计算两类统计量:I2统计量和SPE统计量,确定其控制限,与在线数据进行对比,用于监控系统运行.通过一多变量过程仿真实例,证明了这种方法的可靠性,这为ICA应用于监控多变量系统的运行、检测故障的发生提供了有益的思路. 相似文献
14.
针对基于主分量分析和遗传算法的码书设计算法中当码书大小超过64时码书性能下降的问题,提出了一种改进的码书设计算法.首先采用主分量分析对训练矢量降维以减少计算复杂度,然后利用遗传算法的全局优化能力计算得到接近全局最优的码书.实验结果表明,与原算法和经典的LBG算法相比,文中算法所生成的码书性能有了明显提高,而且计算时间也少于LBG算法. 相似文献
15.
指纹定位是目前最有前途的室内定位方法之一,基于无线信号强度的指纹模型因其无需额外硬件成本、易于推广等特点被广泛采用.指纹模型的选择是影响指纹定位精度的关键因素.传统的通过选择指纹采集点的指纹方法尽管可以减少计算量,但对定位精度贡献不大.提出一种基于主成分分析的指纹模型,通过选择对精度影响最大的一组“成分”作为指导定位的指纹,在减少指纹计算量的同时,提高定位精度.实验结果表明,与基于欧式距离指纹算法和最近邻指纹算法相比,基于主成分分析的指纹算法可以将平均定位精度由5.3m 和3.9m 降低到2.7m. 相似文献
16.
17.
This paper presents a comparison of methods for industrial on-line sensor calibration monitoring for redundant sensors. Principal component analysis (PCA) and independent component analysis (ICA) techniques are developed and compared using both simulated data and data sets from an operating nuclear power plant. The performance is dependent on the types of noise sources; however, under most conditions ICA outperforms PCA, based on the bias and variance of their respective parameter estimates. A case study is included to demonstrate the usefulness of both techniques for the early detection of sensor drift. 相似文献