首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the growth, material characterization, and device characterization of InP-GaInP quantum-dot lasers for operation in the wavelength range 690-750 nm. We show that the growth conditions have a major influence on the form of the gain spectrum. Relatively flat gain can be achieved over a spectral width of 90 nm at 300 K using samples containing a bimodal distribution of dot sizes, or narrower gain spectra at shorter wavelength can be achieved by suppressing the bimodal distribution by using (211)B substrates. Optimization of samples grown on substrates with the growth surface of (100) misorientated by 10/spl deg/ toward [111] results in laser operation between 729 and 741 nm and with a room temperature threshold current density as low as 190 A/spl middot/cm/sup -2/ for a 2000-/spl mu/m-long device with uncoated facets.  相似文献   

2.
Ultraviolet (UV) sensor based on ZnO thin film surface acoustic wave (SAW) device is reported. ZnO films were grown using an RF magnetron sputtering technique. SAW devices were made using such ZnO films exhibiting a central frequency at ~41.2 MHz. The SAW UV sensor was fabricated by depositing a 70 nm thin photoconducting ZnO overlayer on the fabricated SAW device. The SAW UV sensor was found to exhibit interesting photoresponse behavior to UV illumination, and a downshift in frequency of ~45 kHz, and a change in insertion loss ~1.1 dB were observed under UV illumination intensity of 19 mW/cm2. The changes in the frequency of operation and the insertion loss have been attributed to the acoustoelectric interaction between the photogenerated charge carriers and the potential associated with the acoustic waves. Results show the promise of ZnO for the fabrication of low cost wireless SAW UV sensors.  相似文献   

3.
1.3-/spl mu/m-range GaInNAsSb vertical-cavity surface-emitting lasers (VCSELs) with the doped mirror were investigated. GaInNASb active layers that include a small amount of Sb can be easily grown in a two-dimensional manner as compared with GaInNAs due to the suppression of the formation of three-dimensional growth in MBE growth. The authors obtained the lowest J/sub th/ per well (150 A/cm/sup 2//well) for the edge-emission type lasers due to the high quality of GaInNAsSb quantum wells. Using this material for the active media, the authors accomplished the first continuous wave operation of 1.3-/spl mu/m-range GaInNAsSb VCSELs. For the reduction of the threshold voltage and the differential resistance, they used the doped mirror grown by metal-organic chemical vapor deposition (MOCVD). By three-step growth, they obtained 1.3-/spl mu/m GaInNAs-based VCSELs with the low threshold current density (3.6 kA/cm/sup 2/), the low threshold voltage (1.2 V), and the low differential resistance (60 /spl Omega/) simultaneously for the first time. The back-to-back transmission was carried out up to 5 Gb/s. Further, the uniform operation of 10-ch VCSEL array was demonstrated. The maximum output power of 1 mW was obtained at 20/spl deg/C by changing the reflectivity of the front distributed Bragg reflector mirror. GaInNAsSb VCSELs were demonstrated to be very promising material for realizing the 1.3-/spl mu/m signal light sources, and the usage of the doped mirror grown by MOCVD is the best way for 1.3-/spl mu/m VCSELs.  相似文献   

4.
The temperature-dependent characteristics of an InGaP/InGaAs/GaAs heterostructure field-effect transistor (HFET), using the (NH/sub 4/)/sub 2/S/sub x/ solution to form the InGaP surface passivation, are studied and demonstrated. The sulfur-passivated device shows significantly improved dc and RF performances over a wide temperature range (300-510 K). With a 1/spl times/100-/spl mu/m/sup 2/ gate-dimension HFET by (NH/sub 4/)/sub 2/S/sub x/ treatment, the considerably improved thermal stability over dc performances including lower temperature variation coefficients on the turn-on voltage (-1.23 mV/K), the gate-drain breakdown voltage (-0.05 mV/K), the gate leakage current (1.04 /spl mu/A/mm/spl middot/K), the threshold voltage (-1.139 mV/K), and the drain-saturation-current operating regimes (-3.11/spl times/10/sup -4//K) are obtained as the temperature is increased from 300 to 510 K. In addition, for RF characteristics, the sulfur-passivated device also shows a low degradation rate on drain-saturation-current operating regimes (-3.29/spl times/10/sup -4//K) as the temperature is increased from 300 to 400 K. These advantages provide the promise for high-speed high-frequency high-temperature electronics applications.  相似文献   

5.
Recent progress in semiconductor quantum-dot (QD) lasers approaches qualitatively new levels, when dramatic progress in the development of the active medium already motivates search for new concepts in device and system designs. QDs, which represent coherent inclusions of narrower bandgap semiconductor in a wider gap semiconductor matrix, offer a possibility to extend the wavelength range of heterostructure lasers on GaAs substrates to 1.3 /spl mu/m and beyond and create devices with dramatically improved performance, as compared to commercial lasers on InP substrates. Low-threshold current density (100 A/cm/sup 2/), very high characteristic temperature (170 K up to 65/spl deg/C), and high differential efficiency (85%) are realized in the same device. The possibility to stack QDs (e.g., tenfold) without an increase in the threshold current density and any degradation of the other device parameters allow realization of high modal gain devices suitable for applications in 1.3-/spl mu/m short-cavity transmitters and vertical-cavity surface-emitting lasers (VCSELs). The 1.3-/spl mu/m QD GaAs VCSELs operating at 1.2-mW continuous-wave output power at 25/spl deg/C are realized, and long operation lifetime is manifested. Evolution of GaAs-based 1.3-/spl mu/m lasers offers a unique opportunity for telecom devices and systems. Single-epitaxy VCSEL vertical integration with intracavity electrooptic modulators for lasing wavelength adjustment and/or ultrahigh-frequency wavelength modulation is possible. Arrays of wavelength-tunable VCSELs and wavelength-tunable resonant-cavity photodetectors may result in a new generation of "intelligent" cost-efficient systems for ultrafast data links in telecom.  相似文献   

6.
We report high power (>36 W) with beam propagation factor M/sup 2//spl sim/2 in a diode end-pumped Tm:LiYF/sub 4/ (Tm:YLF) laser generating output near the 1.91-/spl mu/m region. Using the 1.91-/spl mu/m emission and high brightness achieved with the Tm:YLF laser we resonantly end-pump the Holmium /sup 5/I/sub 7/ manifold in Ho:YAG and demonstrate /spl sim/19 W of continuous-wave (CW) output. The diode-to-Holmium optical to-optical conversion efficiency achieved is /spl sim/18%. Using a CW pumped and repetitively Q-switched configuration, the Tm:YLF pumped Ho:YAG laser achieves >16 W of output power with an M/sup 2//spl sim/1.48 at 15 kHz. A Q-switched frequency range of 9 to >50 kHz is also achieved.  相似文献   

7.
High-saturation current wide-bandwidth photodetectors   总被引:2,自引:0,他引:2  
This paper describes the design and performance of two wide-bandwidth photodiode structures. The partially depleted absorber photodiode utilizes an absorbing layer consisting of both depleted and undepleted In/sub 0.53/Ga/sub 0.47/As layers. These photodiodes have achieved saturation currents (bandwidths) of >430 mA (300 MHz) and 199 mA (1 GHz) for 100-/spl mu/m-diameter devices and 24 mA (48 GHz) for 100-/spl mu/m/sup 2/ area devices. Charge compensation has also been utilized in a similar, but modified In/sub 0.53/Ga/sub 0.47/As-InP unitraveling-carrier photodiode design to predistort the electric field in the depletion region in order to mitigate space charge effects. For 20-/spl mu/m-diameter photodiodes the large-signal 1-dB compression current and bandwidth were /spl sim/90 mA and 25 GHz, respectively.  相似文献   

8.
Lanthanum modified PZT thin films with compositions, namely 8/60/40, 8/70/30, 10/70/30 and 12/70/30 were deposited on platinized silicon substrates by sol-gel spin coating technique. Characterization of these films by XRD and SEM show that the films possess perovskite phase with submicron crystallite size. The saturation polarization (Ps), remnant polarization (PR) and coercive field (Ec) of polarization-electric field hysteresis loop are presented for all compositions. The 8/60/40 composition shows hysteresis loop with P/sub R/ = 11 /spl mu/C/cm/sup 2/. The temperature dependence of dielectric constant and dielectric loss of these films are also studied. Leakage current densities for these thin films are found to be in the range of 10/sup -/-10/sup -/ A/cm/sup 2/. To show the possible application of these thin films for micro electromechanical system (MEMS), a device incorporating an 8/60/40 PLZT thin film has been fabricated using silicon micromachining technology. This device functions satisfactorily as a vibration sensor with a resonance frequency of approximately 8.45 MHz.  相似文献   

9.
Optical imaging of objects within highly scattering media, such as tissue, requires the detection of ballistic/quasi-ballistic photons through these media. Recent works have used phase/coherence domain or time domain tomography (femtosecond laser pulses) to detect the shortest path photons through scattering media. This work explores an alternative, angular domain imaging, which uses collimation detection capabilities of small acceptance angle devices to extract photons emitted aligned closely to a laser source. It employs a high aspect ratio, micromachined collimating detector array fabricated by high-resolution silicon surface micromachining. Consider a linear collimating array of very high aspect ratio (200: 1) containing 51/spl times/1000 /spl mu/m etched channels with 102-/spl mu/m spacing over a 10-mm silicon width. With precise array alignment to a laser source, unscattered light passes directly through the channels to the charge coupled device detector and the channel walls absorb the scattered light at angles >0.29/spl deg/. Objects within a scattering medium were scanned quickly with a computer-controlled Z axis table. High-resolution images of 100-/spl mu/m-wide lines and spaces were detected at scattered-to-ballistic ratios of 5/spl times/10/sup 5/: 1, with objects located near the middle of the sample seen at even higher levels. At >5/spl times/10/sup 6/: 1 ratios, a uniform background of scattered illumination degrades the image contrast unless recovered by background subtraction. Monte Carlo simulation programs designed to test the angular domain imaging concept showed that the collimator detects the shortest path length photons, as in other optical tomography methods. Furthermore, the collimator acts as an optical filter to remove scattered light while preserving the image resolution. Simulations suggest smaller channels and longer arrays could enhance detection by >100.  相似文献   

10.
1.3- and 1.55-/spl mu/m vertical-cavity surface-emitting lasers (VCSELs) on InP have been realized. High-reflectivity AlGaInAs-InP lattice matched distributed Bragg reflectors (DBRs) were grown on InP substrates. 1.7 (for 1.3 /spl mu/m) and 2.0 (for 1.55 /spl mu/m) mW single mode power at 25/spl deg/C, 0.6 mW single mode power at 85/spl deg/C and lasing operation at >100/spl deg/C have been achieved. 10 Gbit/s error free transmissions through 10 km standard single mode fiber for 1.3-/spl mu/m VCSELs, and through 15 km nonzero dispersion shift fiber for 1.55-/spl mu/m VCSELs, have been demonstrated. With the addition of an SOA, 100 km error free transmission at 10 Gbit/s also has been demonstrated through a negative dispersion fiber. No degradation has been observed after over 2500-h aging test.  相似文献   

11.
We investigate the potential of large optical cavity (LOC)-laser structures for AlGaInP high-power lasers. For that we study large series of broad area lasers with varying waveguide widths to obtain statistically relevant data. We study in detail I/sub th/, /spl alpha//sub i/, /spl eta//sub i/, and P/sub max/, and analyze above-threshold behavior including temperature stability and leakage current. We got as expected for LOC structures minimal /spl alpha//sub i//spl les/1 cm/sup -1/ resulting in /spl eta//sup d/=1.1 W/A for 64/spl times/2000 /spl mu/m/sup 2/ uncoated devices. We obtain total output powers /spl ges/3.2 W (qCW) and /spl ges/1.5 W (CW) at 20/spl deg/C.  相似文献   

12.
The effect of technology scaling (0.5-0.09 /spl mu/m) on single event upset (SEU) phenomena is investigated using full two-dimensional device simulation. The SEU reliability parameters, such as critical charge (Q/sub crit/), feedback time (T/sub fd/) and linear energy transfer (LET), are estimated. For L/sub g/<0.18 /spl mu/m, the source node collects a significant fraction of radiation-induced charge resulting in an increase of LET, despite the lower critical charge at the sensitive drain node. The effect of striking location on LET confirms this finding.  相似文献   

13.
Dielectric measurements have been carried out using an impedance analyzer for two ferroelectric liquid crystals R-4' (1-methoxycarbonyl-1-ethoxy) phenyl 4-(4-octyloxy phenyl) benzoate (1MC1EPOPB) and R-4' (1-butoxycarbonyl-1-ethoxy) phenyl 4-(4-octyloxy phenyl) benzoate (1BC1EPOPB). The two types have large spontaneous polarization, +1700 /spl mu/C/m/sup 2/ for 1MC1EPOPB and +2400 /spl mu/C/m/sup 2/ for 1BC1EPOPB. The permittivity and dielectric loss have been measured at different temperatures in the range 343.0 K to 383.0 K for 1MC1EPOPB and 318.0 K to 353.0 K for 1BC1EPOPB in the frequency range 2 Hz to 2 MHz. Both of the ferroelectric liquid crystals, 1MC1EPOPB and 1BC1EPOPB show a new phase smectic X along with smectic C* and smectic A phases. The work reported in this paper is new and is very useful in understanding their application in switching devices.  相似文献   

14.
The mobility /spl mu/ of excess electrons in dense Argon gas was measured as a function of the applied electric field E and of the gas density N at several temperatures in the range 142.6 < T < 200 K, encompassing the critical temperature T/sub c/ = 150.86 K We report here measurements up to N /spl ap/ 7 nm/sup -3/, close to the critical density, N/sub c/ /spl ap/ 8.1 nm/sup -3/. At all temperatures, and up to moderately high densities, the density-normalized mobility /spl mu/N shows the usual electric field dependence in a gas with a Ramsauer-Townsend minimum due to the mainly attractive electron-atom interaction. /spl mu/N is constant and field independent for small E, shows a maximum for a reduced field E/N /spl ap/ 4 mTd, and then decreases rapidly with the field. The zero field density-normalized mobility /spl mu//sub 0/N, for all T > T/sub c/, shows the well known anomalous positive density effect, i.e., /spl mu//sub 0/N increases with increasing N. Below T,, however, /spl mu//sub 0/N does not show the expected effect, but features a broad maximum. This appears to be a crossover behavior between the positive density effect shown for T > T, and the small negative effect previously observed for T /spl ap/ 90 K However, the data at all temperatures confirm the interpretation of the anomalous density effect as being essentially due by the density-dependent quantum shift of the electron ground state kinetic energy in a disordered medium as a result of multiple scattering (MS) processes, although other MS processes influence the experimental outcome.  相似文献   

15.
PZT/epoxy composites with 1-3 connectivity were prepared using the dice-and-fill technique. The samples were poled with an electric field of 10 MV/m for 30 minutes at room temperature. The piezoelectric and pyroelectric coefficients for the composites were measured. From the laser interferometric measurements, it was found that the piezoelectric d/sub 33/ coefficients for the composites were independent of the volume fraction and averaged (190 /spl mnplus/ 10) pm/V, which was about half of the measured value of lead zirconate titanate (PZT) ceramic. Measurements of the pyroelectric coefficient showed that the coefficients increased with the ceramic content and reached values as large as 54 /spl mu/C/m/sup 2/ /spl deg/C. The thermal diffusivity of the composites was also determined using a technique based on the measurement of the phase retardation of a thermal wave passing through the material. The average value for the composites was (2.15/spl mnplus/ 0.05) /spl times/ 10/sup -7/ m/sup 2//s.  相似文献   

16.
The 1.27-/spl mu/m InGaAs:Sb-GaAs-GaAsP vertical cavity surface emitting lasers (VCSELs) were grown by metalorganic chemical vapor deposition and exhibited excellent performance and temperature stability. The threshold current varies from 1.8 to 1.1 mA and the slope efficiency falls less than /spl sim/35% from 0.17 to 0.11 mW/mA as the temperature is raised from room temperature to 75/spl deg/C. The VCSELs continuously operate up to 105/spl deg/C with a slope efficiency of 0.023 mW/mA. With a bias current of only 5 mA, the 3-dB modulation frequency response was measured to be 8.36 GHz, which is appropriate for 10-Gb/s operation. The maximal bandwidth is estimated to be 10.7 GHz with modulation current efficiency factor of /spl sim/5.25GHz/(mA)/sup 1/2/. These VCSELs also demonstrate high-speed modulation up to 10 Gb/s from 25/spl deg/C to 70/spl deg/C. We also accumulated life test data up to 1000 h at 70/spl deg/C/10 mA.  相似文献   

17.
Negatively corona-charged 50-/spl mu/m-thick polypropylene (PP) film is measured using laser-induced pressure pulse (LIPP) and thermally stimulated current (TSC) in order to study the charge storage mechanism in the PP film. The LIPP can reveal the space-charge distribution in the depth direction of the PP films and the TSC can be used to measure the energetic depth of the charge trap. The LIPP shows that negative charge is deposited on the charged surface of the sample. Almost all surface charges are removed by soaking the sample in ethanol. However, about 5% of the surface charge is injected into the sample up to a depth of about 7 /spl mu/m from the surface. The injected charge is not removed by the dip-in-ethanol method because the ethanol does not penetrate into the sample. The injection of the surface charge increases with corona-charging temperature. Besides the negative charge injection, the injection of positive charge from the opposite surface is also observed when the sample is charged at higher than 60/spl deg/C. In addition, negative bulk charge is formed when the sample is charged at higher than 80/spl deg/C. The LIPP profile is compared with the TSC spectrum. It is shown that the space charge observed using LIPP disappears when the temperature of the sample exceeds 80/spl deg/C. However, TSC is observed at even higher than 80/spl deg/C. This indicates that the TSC is observed even after the disappearance of the space charge measured using LIPP.  相似文献   

18.
We have successfully fabricated 1.3-/spl mu/m AlGaInAs strain-compensated multiple-quantum-well (MQW) buried-heterostructure (BH) lasers by narrow-stripe selective metalorganic vapor-phase epitaxy. Based on the optimization of AlGaInAs strain compensated MQW and the Al-oxidation-free BH process, we obtained a low-threshold current of 12.5 mA and a relaxation frequency of more than 10 GHz at 85/spl deg/C for Fabry-Perot lasers. For distributed feedback lasers, we demonstrated a 10-Gb/s operation and transmission of over 16 Km for a single mode fiber at 100/spl deg/C. Furthermore, a record-low 25.8-mA/sub p-p/ modulation current for a 10-Gb/s modulation at 100/spl deg/C was demonstrated with shorter cavity and high grating-coupling coefficient. A median life of more than 1/spl times/10/sup 5/ h at 85/spl deg/C was estimated after an aging test of over 5000 h for these lasers. These superior characteristics at high temperatures were achieved by the combination of the high differential gain of AlGaInAs strain compensated MQW and the BH structure.  相似文献   

19.
This paper investigated the reliability of semiconductor 1.3-/spl mu/m multiquantum-well (MQW) Fabry-Perot laser diodes (LDs) in a quarter 2-in wafer level that are measured to have uniform threshold currents, slope efficiencies, and wavelengths within 4% of the maximum deviation. By performing the accelerated aging test under a constant optical power of 3 mW at 85/spl deg/C for 2100 h, the lifetime of the fabricated optoelectronic devices was estimated, where the failure rate was matched on the fitted line of the lognormal distribution model resulting in the mean-time-to-failure (MTTF) of 2/spl times/10/sup 6/ h operating at room temperature.  相似文献   

20.
As device scaling for higher performance bipolar transistors continues, the operation current density increases as well. To investigate the reliability impact of the increased operation current density on Si-based bipolar transistors, an accelerated-current wafer-level stress was conducted on 120-GHz SiGe heterojunction bipolar transistors (HBTs), with stress current density up to as high as J/sub C/=34 mA//spl mu/m/sup 2/. With a novel projection technique based on accelerated-current stress, a current gain shift of less than /spl sim/15% after 10/sup 6/ h of operation is predicted at T=140/spl deg/C. Degradation mechanisms for the observed dc parameter shifts are discussed for various V/sub BE/ regions, and the separation of the current stress effect from the self-heating effect is made based on thermal resistance of the devices. Module-level stress results are shown to be consistent with wafer-level stress results. The results obtained in this work indicate that the high-speed SiGe HBTs employed for the stress are highly reliable for long-term operation at high operation current density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号