首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Over a wide range of growth rates, two strains of Escherichia coli growing aerobically in continuous culture under glucose limitation utilized glucose at rates identical with those at which cells harvested from the chemostats transported [14C]glucose.  相似文献   

2.
Human thyroperoxidase (hTPO), a type I transmembrane heme containing glycoprotein, catalyzes iodide organification and thyroid hormone synthesis and plays a major role in thyroid autoimmunity. Whereas hormonosynthesis occurs at the apical membrane of thyroid cells, TPO localizes mainly in the perinuclear membrane and the endoplasmic reticulum. To establish the intracellular trafficking and the structural characteristics of hTPO in the various cell compartments, hTPO was stably expressed in the Chinese hamster ovary cell line, and its folding was studied with two monoclonal antibodies (mAbs): mAb 47, recognizing a linear epitope; and mAb 15, recognizing a conformational epitope present in the mature protein. The results show that only 15-20% of hTPO molecules were able to acquire a conformation suitable for the recognition by mAb 15. On the other hand, only a part (approximately 15%) of the latter were able to reach the plasma membrane. The hTPO, unable to fold correctly, was more rapidly degraded than that recognized by mAb 15 (half-time, 2 h vs. 7 h). Study of the carbohydrate content of hTPO showed that N-glycans with complex-type structure were found only on hTPO at the cell surface, whereas intracellular hTPO bore high-mannose-type structures. Taken together, these data demonstrate that the intracellular pool of enzyme is formed of newly synthesized molecules and is not caused by recycling of mature hTPO from the cell surface. Complete inhibition of hTPO N-glycosylation with tunicamycin led to a 95% decrease in hTPO at the plasma membrane and, thus, to a decrease in enzymatic activity at the cell surface, emphasizing the role of N-glycans in the intracellular trafficking of hTPO. However, inhibition of formation of complex-type structures with deoxymannojirimycin and of O-glycans with phenyl-alpha-GalNAc did not influence the intracellular trafficking and enzymatic activity of hTPO.  相似文献   

3.
4.
5.
SecA binds to the inner membrane of Escherichia coli through low affinity lipid interactions or with high affinity at SecYEG, the integral domain of preprotein translocase. Upon addition of preprotein and nucleotide, a 30 kDa domain of SecYEG-bound SecA is protected from proteolysis via membrane insertion. Such protection could result from some combination of insertion into the lipid phase, into a proteinaceous environment or across the membrane. To assess the exposure of SecYEG-bound SecA to membrane lipids, a radiolabeled, photoactivatable and lipid-partitioning crosslinker, 3-trifluoromethyl-3-(m[125I]iodophenyl) diazirine benzoic acid ester, was incorporated into inner membrane vesicles. The 30 kDa domain of SecYEG-bound SecA, inserted into the membrane in response to translocation ligands, is 18-fold less labeled than SecY, which is labeled effectively. In contrast, incorporation of the purified 30 kDa SecA fragment into crosslinker-containing detergent micelles or addition of detergent to crosslinker-containing membranes bearing the protease-protected SecA domain readily allows for labeling of this domain. We propose that the protease-inaccessible 30 kDa SecA domain is shielded from the fatty acyl membrane phase by membrane-spanning SecYEG helices and/or is largely exposed to the periplasm.  相似文献   

6.
According to landscape theory proteins do not fold by localised pathways, but find their native conformation by a progressive organisation of an ensemble of partly folded structures down a folding funnel. Here, we use kinetics and protein engineering to investigate the shape of the free-energy profile for two-state folding, which is the macroscopic view of the funnel process for small and rapidly folding proteins. Our experiments are based mainly on structural changes of the transition state of chymotrypsin inhibitor 2 (CI2) upon destabilisation with temperature and GdnHCl. The transition state ensemble of CI2 is a localised feature in the free-energy profile that is sharply higher than the other parts of the activation barrier. The relatively fixed position of the CI2 transition state on the reaction coordinate makes it easy to characterise but contributes also to overshadow the rest of the free-energy profile, the shape of which is inaccessible for analysis. Results from mutants of CI2 and comparison with other two-state proteins, however, point at the possibility that the barrier for folding is generally broad and that localised transition states result from minor ripples in the free-energy profile. Accordingly, variabilities in the folding kinetics may not indicate different folding mechanisms, but could be accounted for by various degrees of ruggedness on top of very broad activation barriers for folding. The concept is attractive since it summarises a wide range of folding data which have previously seemed unrelated. It is also supported by theory. Consistent with experiment, broad barriers predict that new transition state ensembles are exposed upon extreme destabilisation or radical mutations.  相似文献   

7.
8.
A conventional affinity protein purification system often requires a separate protease to separate the target protein from the affinity tag. This paper describes a unique protein purification system in which the target protein is fused to the C-terminus of a modified protein splicing element (intein). A small affinity tag is inserted in a loop region of the endonuclease domain of the intein to allow affinity purification. Specific mutations at the C-terminal splice junction of the intein allow controllable C-terminal peptide bond cleavage. The cleavage is triggered by addition of thiols such as dithiothreitol or free cysteine, resulting in elution of the target protein while the affinity-tagged intein remains immobilized on the affinity column. This system eliminates the need for a separate protease and allows purification of a target protein without the N-terminal methionine. We have constructed general cloning vectors and demonstrated single-column purification of several proteins. In addition, we discuss several factors that may affect the C-terminal peptide bond cleavage activity.  相似文献   

9.
10.
We examine the function of the pro beta-peptide (residues 42-121) in the folding and intracellular transport of human beta-hexosaminidase B (beta-N-acetylhexosaminidase, EC 3.2.1.52). A construct was prepared that encoded an in frame deletion of residues 55-118. Expression of this construct in COS-1 cells produced a beta-polypeptide chain that formed insoluble aggregates and remained trapped in the endoplasmic reticulum (ER). We conclude that the pro beta-peptide may act as a type of intramolecular chaperone for the mature beta-subunit.  相似文献   

11.
D-type cyclins are induced in response to mitogens and are believed to control progression through the G1 phase of the cell cycle by activating their corresponding kinase partners (cyclin-dependent kinases). To investigate the function of individual D-type cyclins we have constructed rat fibroblast lines that allow controllable overexpression of a human cyclin D3 cDNA. Overexpression of cyclin D3 led to accelerated passage through G1 in actively proliferating cells with no effect on the overall population doubling time. In cells re-entering the division cycle from a quiescent state, cyclin D3 caused an even more dramatic advancement of S phase entry. Accelerated progression through G0/G1-to-S correlated with premature phosphorylation of the pRb tumor suppressor protein and its relatives, p107 and p130. We conclude that cyclin D3 can act as a rate-limiting G1 cyclin and that this effect involves, in part, the premature phosphorylation of critical substrates.  相似文献   

12.
The time course of the unfolding characteristics of the protein moiety and of the thermotropic behavior of the core-located apolar lipids of highly homogeneous low-density lipoprotein (LDL) subspecies (d 1.030-1.040 g/mL) have been evaluated during transition metal- and azo radical-induced oxidation using differential scanning calorimetry. Apolipoprotein B100 (apo-B100) structure was highly sensitive to oxidative modification; indeed, a significant loss of thermal stability was observed at initial stages irrespective of whether oxidation was mediated by site-specific binding of copper ions or by free radicals generated during decomposition of azo compounds. Subsequently, thermal protein integrity was destroyed, as a result of potentially irreversible protein unfolding, cross-linking reactions, and aggregation. Our results suggest that even minimal oxidative modification of apo-B100 has a major impact on the stability of this large monomeric protein. By contrast, the core lipids, which consist primarily of cholesteryl esters and triglycerides and play a determinant role in the thermal transition occurring near physiological temperature, preserved features of an ordered arrangement even during propagation of lipid peroxidation.  相似文献   

13.
Here we demonstrate the presence of the A'-RNA conformation using the single crystal structure of a tridecamer: r(UGAGCUUCGGCUC). The average A'-RNA conformation deduced from X-ray fiber diffraction data had only been available previously, but now the presence of the A'-RNA conformation has been found in a single crystal structure for the first time. Statistical analysis showed that the A'-RNA conformation is distinguishable from the A-RNA conformation in a plot of the major groove width against the base pair inclination angle. The major groove of the A'-RNA conformation is wide enough to accommodate a protein or peptide while that of the A-RNA conformation is too narrow to do so. The presence of the A'-RNA conformation is significant for protein-RNA interaction.  相似文献   

14.
15.
BACKGROUND: Methods have been developed recently for probing local fluctuations of protein structure using H/2H-exchange of amide protons at equilibrium. It has been suggested that equilibrium exchange methods can identify the order of events in folding pathways and detect folding cores. We have applied the procedure of measuring the effects of denaturant on the H/2H-exchange of amide protons of barnase, the folding pathway of which is well established. RESULTS: The addition of relatively low concentrations of denaturant causes the mechanism of exchange of amide protons of barnase to change from EX2 to EX1 for the residues that require global unfolding for exchange to occur. This change of mechanism, which would have been missed by some of the standard tests, causes artefacts that could be easily misinterpreted. We also present the thermodynamic argument that measurements at equilibrium cannot give the order of events in folding. CONCLUSIONS: Measurement of H/2H-exchange of amide protons at equilibrium, when applied correctly, is an excellent method for analyzing the equilibrium distribution of unfolded and partly folded states. It cannot, in theory and in practice, be used for determining protein folding pathways by itself.  相似文献   

16.
Kinesin is a microtubule-dependent motor protein. We have recently determined the X-ray structure of monomeric and dimeric kinesin from rat brain. The dimer consists of two motor domains, held together by their alpha-helical neck domains forming a coiled coil. Here we analyze the nature of the interactions in the neck domain (residues 339-370). Overall, the neck helix shows a heptad repeat (abcdefg)n typical of coiled coils, with mostly nonpolar residues in positions a and d. However, the first segment (339-355) contains several nonclassical residues in the a and d positions which tend to weaken the hydrophobic interaction along the common interface. Instead, stabilization is achieved by a hydrophobic "coat" formed by the a and d residues and the long aliphatic moieties of lysines and glutamates, extending away from the coiled-coil core. By contrast, the second segment of the kinesin neck (356-370) shows a classical leucine zipper pattern in which most of the hydrophobic residues are buried at the highly symmetrical dimer interface. The end of the neck reveals the structure of a potential coiled-coil "trigger" sequence.  相似文献   

17.
Calmodulin-dependent protein kinase II (Cam kinase II) is known to desensitise epidermal growth factor receptor (HER-1) tyrosine kinase activity by a process involving phosphorylation at serines 1046/47 in the cytoplasmic tail. We have developed an experimental system to investigate phosphorylation of the related HER-2/c-erbB2 proto-oncogene utilising purified Cam kinase II and recombinant glutathione-S-transferase (GST) fusion proteins. The cDNA for rat Cam kinase II-alpha was transfected into human embryonic kidney (HEK) 293 fibroblasts and the expressed protein purified to homogeneity by calmodulin-agarose affinity chromatography. A GST fusion protein comprising residues 1126-1255 of HER-2 was phosphorylated by purified Cam kinase II, in contrast to a GST protein comprising residues 1005-1125. Phosphoamino-acid analysis and site-directed mutagenesis indicated that HER-2 was phosphorylated on a single site at threonine-1172 which resides within a consensus Cam kinase II phosphorylation site (RAKT). HER-2 (threonine-1172-alanine), in the form of a ligand-inducible chimaera HER-1/2, was co-transfected into HEK-293 fibroblasts with a constitutively active form of Cam kinase II, followed by in vivo labelling of these cells with 32 P-orthophosphate. Immunoprecipitation of ligand-activated receptors followed by two-dimensional phosphopeptide mapping indicated that threonine-1172 in HER-2 is a newly identified in vivo site which can be hyper-phosphorylated by constitutively active Cam kinase II. In addition, when over-expressed in HEK-293 fibroblasts, HER-1/2 (threonine-1172-alanine) showed a defect in desensitisation and underwent a more sustained EGF-induced receptor autophosphorylation compared to wild-type HER-1/2.  相似文献   

18.
Peptides derived from conserved heptad-repeat regions of several viruses have been shown recently to inhibit virus-cell fusion. To find out their possible role in the fusion process, two biologically active heptad-repeat segments of the fusion protein (F) of Sendai virus, SV-150 (residues 150-186), and SV-473 (residues 473-495) were synthesized, fluorescently labeled and spectroscopically characterized for their structure and organization in solution and within the membrane. SV-150 was found to be 50-fold less active than SV-473 in inhibiting Sendai virus-cell fusion. Circular dichroism (CD) spectroscopy revealed that in aqueous solution, the peptides are self-associated and adopt low alpha-helical structure. However, when the two peptides are mixed together, their alpha-helical content significantly increases. Fluorescence studies, CD, and polarized attenuated total reflection infrared (ATR-FTIR) spectroscopy showed that both peptides, alone or as a complex, bind strongly to negatively charged and zwitterionic phospholipid membranes, dissociate therein into alpha-helical monomers, but do not perturb the lipid packing of the membrane. The ability of the peptides to interact with each other in solution may be correlated with antiviral activity, whereas their ability to interact with the membrane, together with their location near the fusion peptide and the transmembrane domain, suggests a revision to the currently accepted model for viral-induced membrane fusion. In the revised model, in the sequence of events associated with viral entry, the two heptad-repeat sequences may assist in bringing the viral and cellular membranes closer, thus facilitating membrane fusion.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号