首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previously, we have observed a strong restriction of the Moloney murine leukemia virus (MoMLV) replicative cycle in a cell line displaying resistance to topoisomerase II (topo II)-interactive drugs. Resistance towards these antitumoral inhibitors was associated with decreased expression and activity of topo II, suggesting that such a decrease may be responsible for MoMLV restriction. To more specifically assess the role of topo II during the retroviral cycle, we have used the antisense strategy to obtain a selective decrease of cellular topo II expression. The RNA antisense was isolated from a retroviral library expressing random fragments of human topo II (alpha form). This system allowed us to investigate the HIV-1 replicative cycle in two related human CEM cell lines expressing different levels of topo II. Expression of the enzyme is decreased four- to sixfold following formation of a sense-antisense RNA hybrid. Repression of the topo II enzyme results in an impairment of the HIV-1 replicative cycle. Using the polymerase chain reaction, we showed that the number of integration events was decreased in cells repressing the enzyme, although viral DNA synthesis and circularization were equivalent to those in the parent cells.  相似文献   

2.
DNA topoisomerase (topo) II alpha is a major target for many anticancer agents. However, progress towards understanding how these agents interact with this enzyme in human cells and how resistance to these agents arises is greatly impeded by difficulties in expressing this gene. Here, we report on achieving a high level of expression of a full-length human topo II alpha gene in human cells. We started with the topo II alpha cDNA driven by a strong cytomegalovirus promoter and transiently transfected HeLa cells. Although topo II alpha mRNA was consistently detected in transfected cells, no exogenous topo II alpha protein was detected. By contrast, when the same cDNA was fused to an enhanced green fluorescent protein (EGFP), we detected a high level of expression at both mRNA and protein levels. The exogenous topo II alpha was localized to cell nuclei as expected, indicating that the fusion protein is properly folded. Furthermore, overexpression of the EGFP-topo II alpha fusion protein increased the sensitivity of the transfected cells to teniposide, suggesting that it functions as the endogenous counterpart. Thus, in addition to being used as a gene tag, the GFP fusion approach may be generally applicable for expressing genes, such as topo II alpha, that are difficult to express by conventional methods.  相似文献   

3.
The efficacy of all chemotherapeutic agents is limited by the occurrence of drug resistance. To further understand resistance to topoisomerase (topo) II inhibitors, 50 sublines were isolated as single clones from parental cells by exposure to ETP or m-AMSA. Subsequently, a population of cells from each subline was exposed to three-fold higher drug concentrations allowing 16 stable sublines to be established at higher extracellular drug concentration. The frequency and nature of mutations in topo II in the drug selected cell lines have been evaluated. In order to screen a large number of cell lines, an RNase protection assay was developed. Fragments covering the entire coding sequence of topo II was isolated after PCR amplification and subcloned in pGEM3Z vector. Using this approach, mismatches was observed in 13.6% of resistant cell lines (12% of resistant cell lines exposed to lower drug concentrations and 18.8% of resistant cell lines exposed to higher drug concentrations). Our findings suggest that mutations of topo II gene seem to be an important and frequent mechanism of resistance to topo II inhibitors.  相似文献   

4.
A patient with chronic hepatitis associated with hepatitis C virus infection was observed to convert from antinuclear antibody-negative to antinuclear antibody-positive status at the time when liver cancer was detected. The newly recognized antibodies reacted with a nuclear protein doublet of 170 and 180 kDa in immunoblotting, and in fluorescence-activated flow cytometry the antigens were shown to vary in expression level in a cell cycle-related manner: minimum in G1, increasing in S, and maximum in G2 and M. In synchronized HeLa and HEp-2 cells, immunofluorescence microscopy showed uniformly distributed staining of the nucleoplasm in S-phase, with increased intensity of nucleoplasmic staining in G2, at which time nucleolar staining was also present. In M, condensed chromosomes were uniformly stained. Using previously characterized polyclonal antibodies to DNA topoisomerase II (topo II) as reference markers, the antigens recognized by the patient's serum were shown in Western blotting to have the same mobilities as DNA topo IIalpha (170 kDa) and beta (180 kDa) isoforms. The patient's serum was also highly efficient in inhibiting DNA topo II in an in vitro functional assay. Antibody to DNA topo II appeared de novo in close association with transformation to cancer, and since dysregulation of DNA topo II is considered to be involved in some forms of tumorigenesis, the observed antibody response in this patient could conceivably be an immune reaction to the abnormally regulated protein.  相似文献   

5.
We characterized three human brain tumor cell lines (D54, HBT-20, and HBT-28) with respect to resistance to etoposide (VP-16), a topoisomerase II-reactive drug. All three cell lines were inherently resistant to VP-16 when compared to other human cell lines, with D54 showing the greatest resistance using colony formation assays. Resistance to VP-16 has been attributed to decreased drug uptake and changes in topoisomerase II; however, drug uptake and topoisomerase II protein levels (immunoblot) were no lower in D54 than in HBT-20 and HBT-28, cell lines relatively more sensitive to VP-16. More to the point, measurement of topoisomerase II-mediated DNA cleavage of cellular DNA after treatment with VP-16 showed that the topoisomerase II in these cells was active. These data indicate mechanisms other than those attributable to decreased drug uptake or altered topoisomerase II exist for clinical resistance to VP-16. VP-16-induced DNA cleavage has been associated with apoptosis in some cell lines; however, neither DNA laddering nor morphological changes characteristic of apoptosis were detected in these cell lines after treatment with VP-16. Bcl-2 and mutant p53 were present in these cells. Either of these conditions can prevent apoptosis and could explain a dissociation between the proximal mediator of VP-16-induced cytotoxicity (topoisomerase II-DNA complex formation) and cellular death.  相似文献   

6.
The effect of the novel topoisomerase I inhibitor NU/ICRF 505 (20 microM, approximate IC50 concentration) on the cell cycle was studied by flow cytometry in four Chinese hamster ovary (CHO) cell lines. Postdrug treated cells were incubated with optimal concentrations of cytochalasin B to prevent re-entry of daughter cells into the cell cycle. NU/ICRF 505 had no significant effect on cell cycle distribution in the parent cell line (CHO-K1) and two mutants hypersensitive to topo II inhibitors (ADR-1, ADR-3), all of which express similar levels of topo I protein. In the drug-resistant variant ADR-r, which overexpresses topo I 2-fold, a significant accumulation of cells in G1 phase was recorded. These results are broadly consistent with the cell cycle effects expected in CHO cells by a classic topo I poison (camptothecin) and add weight to the view that NU/ICRF 505 induces cell death primarily through topo I inhibition.  相似文献   

7.
We investigated the modification of etoposide (i.e. VP-16)-induced cell killing by hyperthermia in a radioresistant human melanoma (Sk-Mel-3) and a human normal (AG1522) cell line. VP-16, a DNA topo II poison, was given as a 1 h exposure at variable doses up to 35 microM; hyperthermia was given either before or following VP-16 treatment. Hyperthermic treatment comprised one of the following: 41 degrees C for 8 h, 42 degrees C for 2 h or 45 degrees C for 15 min. Hyperthermia preceding VP-16 treatment reduced the cytotoxicity of the latter; the reduction of VP-16 cytotoxicity was directly proportional to the severity of the hyperthermic treatment. For a particular combination of hyperthermic dose and VP-16 concentration, generally similar responses were seen in both cell lines. There were no effects on VP-16 cytotoxicity when both Sk-Mel-3 and AG1522 cells were heated at 41 degrees C for 8 h following treatment with VP-16. However, heating both cell lines at 45 degrees C for 15 min following VP-16 treatment again reduced the amount of cytotoxicity associated with VP-16. In addition, we found that a preceding exposure to 45 degrees C, 15 min heating did not affect either cellular accumulation or efflux of [3H]VP-16 in both cell lines. This suggested that the reduction in VP-16 cytotoxicity observed under those conditions was not due to a modification of VP-16 transport. We found no differences between the catalytic activities of topo II extracted from nuclei of Sk-Mel-3 and AG1522 cells that were either heated at 45 degrees C for 15 min or that were not subjected to such treatment. These results therefore suggested that the substantial reduction of cytotoxicity seen when 45 degrees C, 15 min heating preceded VP-16 treatment was also not due to an effect on topo II catalytic activity. Our results therefore demonstrate that hyperthermia, given either before or after VP-16, can actually reduce the amount of VP-16 cytotoxicity and that this can occur without any overt changes in VP-16 accumulation and efflux or in topo II catalytic activity.  相似文献   

8.
Topoisomerase (topo) II alpha is degraded via polyubiquitination during adenovirus E1A-induced apoptosis in MA1 cells, a derivative of the human epidermoid carcinoma cell line KB. Topo II alpha ubiquitination activity in MA1 cells increased nearly 10-fold after induction of E1A in response to dexamethasone. To identify a topo II alpha ubiquitination factor(s), the S100 fractions prepared from apoptosis-induced (42 h) and uninduced (0 h) MA1 cells were first fractionated by ubiquitin-Sepharose columns. The ubiquitination activity induced by E1A was predominantly eluted with 20 mM AMP. Further fractionation of the AMP eluates on Resource-Q columns and the thiolester formation of the proteins resolved by electrophoresis with biotinylated ubiquitin revealed that a species of E2 isozyme recovered in the QFT2 fraction increased markedly in MA1 cells after E1A expression. These results indicate that a ubiquitination factor(s) specific to topo II alpha is induced during E1A-induced apoptosis in MA1 cells.  相似文献   

9.
Topoisomerase I-directed agents are now in Phase I and II clinical trials and show great promise as potentially important agents for cancer chemotherapy. Because of their mechanism of action they may also be potential mutagens; however, their mutagenicity and oncogenicity still remain to be elucidated. We have previously shown that VP-16, a topoisomerase II-directed agent, induces sister chromatid exchanges and gene deletions and/or rearrangements in vitro. These observations may account for both the cytotoxic effects of topoisomerase II-directed agents as well as their recently reported leukemonogenic potential. To evaluate the potential mutagenicity of topoisomerase I-directed drugs, we measured mutant frequencies at the hypoxanthine phosphoribosyl transferase locus of the V79 Chinese hamster fibroblast cell line treated with the topoisomerase I-directed drugs camptothecin and topotecan, and compared these results with mutant frequency obtained with the topoisomerase II-directed drug VP-16 and an alkylating agent, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). All of these drugs showed a dose-dependent increase in mutant frequency at the hypoxanthine phosphoribosyl transferase locus. At a dose producing approximately 30% survival, VP-16, camptothecin, and topotecan induced mutant frequencies of 11.3 x 10(-6), 4.9 x 10(-6), and 2.7 x 10(-6), respectively, whereas the spontaneous mutant frequency at this locus was 0.3 x 10(-6). In contrast, the alkylating agent MNNG produced a mutant frequency of 562 x 10(-6) at 26% survival dose. The molar mutagenic potencies, expressed as mutant frequency/mol-h exposure, for VP-16, camptothecin, topotecan, and MNNG at approximately 30% survival dose were 0.9, 8.2, 2.3, and 56.8, respectively. On Southern blot analysis after EcoRI, PstI, or HindIII digestion, 6 of 12 independent thioguanine-resistant mutants induced by topotecan showed gene deletions or rearrangements. In contrast, five of five independent spontaneous mutants and six of six independent mutants induced by MNNG demonstrated the same restriction pattern as the parental V79 cells. These results indicate that the mutant frequency and the mutagenic potential of topoisomerase I and II active agents are quantitatively similar. The results further demonstrate that topoisomerase I and II active agents introduce mutations characterized by gene deletions and rearrangements, whereas spontaneous mutations and those induced by alkylating agents appeared to be more characteristically associated with point mutations. Thus, clinical use of the topoisomerase I and II active agents is expected to cause similar mutagenic effects that could potentially lead to secondary malignancies.  相似文献   

10.
11.
The topoisomerase II alpha (topo II alpha) enzyme is the target for several chemotherapeutic agents, including etoposide, teniposide, mitoxantrone, and doxorubicin (topo II poisons). The enzyme also is a marker of cell proliferation. Most cases of Hodgkin's disease (HD) are responsive to combination chemotherapy regimes that include topo II poisons such as doxorubicin. Immunoperoxidase methods for detection of the topo II alpha isoenzyme are now available for use in formalin-fixed, paraffin-embedded tissues, which may provide information about the proliferative capacity and possible sensitivity of tumors to drugs that target topo II. We used a specific antibody to analyze subsets of HD for topo II alpha staining patterns. Formalin-fixed blocks from 49 cases of HD, including 20 nodular sclerosis (NS), 14 mixed-cellularity (MC), and 15 lymphocyte-predominant (LP) subtypes, were analyzed by dual staining for topo II in combination with monoclonal antibodies against Reed-Sternberg (RS) cells consisting of CD15 for the NS and MC subtypes and CD20 for LP lymphocytic and histiocytic (L & H) cells. The number of morphologically appropriate cells coexpressing the RS or L & H marker and topo II alpha was quantitated. Positive nuclear staining for topo II alpha in RS or L & H cells was seen in 100% of cases, irrespective of subtype. Coexpression of CD15 and topo II alpha was seen in 58.4% of the RS cells or mononuclear variants in NSHD cases and 68.4% in MCHD cases. No significant difference in the percentage of neoplastic cells expressing topo II alpha was found between NS and MC subtypes. Cases of LPHD showed coexpression of CD20 and topo II alpha in 84.4% of the L & H cells, a significant increase over the level of tumor cell coexpression seen in NSHD and MCHD (P < .001). Only one case was found to have a low (< 25% of tumor cell coexpression) level of topo II alpha expression. Immunohistochemical detection of a high level of topo II alpha expression in HD, irrespective of subtype, suggests a molecular explanation for the excellent response of most HD to standard combination chemotherapy, which can include topo II poisons. The LP subtype has a higher expression of topo II alpha in the neoplastic cell population than do NS or MC subtypes, perhaps indicating increased sensitivity of these tumors to topo II poisons. It may be possible to identify subsets of HD that are more or less sensitive to conventional chemotherapeutic regimes, which would help in the selection of appropriate treatment.  相似文献   

12.
Numerous chemotherapeutic agents act via stabilization of a topoisomerase (topo) II-DNA complex. HL-60/AMSA, a human leukemia cell line, is resistant to intercalator-mediated DNA complex formation and cytotoxicity. HL-60/AMSA contains a mutant form of topo IIalpha that was thought to explain this resistance. However, our present data show that expression of topo IIbeta RNA in HL-60/AMSA is only 10% of that in HL-60, and topo IIbeta protein levels are undetectable. Southern analysis of topo IIbeta shows no differences in gene dosage between the two cell lines but does show differences in the restriction patterns. These data suggest that decreased topo IIbeta expression may contribute to the intercalator resistance of HL-60/AMSA cells.  相似文献   

13.
We have shown that both DNA topoisomerase (topo) IIalpha and beta are in vivo targets for etoposide using a new assay which directly measures topo IIalpha and beta cleavable complexes in individual cells after treatment with topo II targeting drugs. CCRF-CEM human leukemic cells were exposed to etoposide for 2 hr, then embedded in agarose on microscope slides before cell lysis. DNA from each cell remained trapped in the agarose and covalently bound topo II molecules from drug-stabilized cleavable complexes remained associated with the DNA. The covalently bound topo II was detected in situ by immunofluorescence. Isoform-specific covalent complexes were detected with antisera specific for either the alpha or beta isoform of topo II followed by a fluorescein isothiocyanate-conjugated second antibody. DNA was detected using the fluorescent stain Hoechst 33258. A cooled slow scan charged coupled device camera was used to capture images. A dose-dependent increase in green immunofluorescence was observed when using antisera to either the alpha or beta isoforms of topo II, indicating that both isoforms are targets for etoposide. We have called this the TARDIS method, for trapped in agarose DNA immunostaining. Two key advantages of the TARDIS method are that it is isoform-specific and that it requires small numbers of cells, making it suitable for analysis of samples from patients being treated with topo II-targeting drugs. The isoform specificity will enable us to extend our understanding of the mechanism of interaction between topo II-targeting agents and their target, the two human isoforms.  相似文献   

14.
In mammalian cells, DNA topoisomerase II is the product of two distinct genes encoding the alpha and beta isoforms of the enzyme. Besides homodimeric topoisomerase IIalpha and IIbeta, we have recently shown that alpha/beta heterodimers constitute a third population of topoisomerase II in HeLa cells. We found that topoisomerase II heterodimers are not restricted to HeLa cells but exist in different mammalian cell types, and up to 25% of the total topoisomerase IIbeta population is involved in heterodimer formation. Studies of topoisomerase II phosphorylation in HeLa cells show that heterodimers are phosphorylated in vivo to a significantly lower level compared to homodimeric alpha enzymes, but in contrast to the latter neither heterodimers nor topoisomerase IIbeta homodimers coprecipitate together with a kinase activity that is able to mediate their phosphorylation. However, both enzymes can still be phosphorylated by exogenously added casein kinase II. The differential phosphorylation of topoisomerase II heterodimers suggests an alternative regulation of this topoisomerase II subclass compared to the homodimeric topoisomerase IIalpha counterparts.  相似文献   

15.
The mechanism of action of the topoisomerase II inhibitor etoposide (VP-16) was investigated in male mouse meiosis using the spermatid micronucleus (MN) test and two molecular cytogenetic approaches: (i) fluorescence in situ hybridization (FISH) with a mouse centromere specific minor satellite DNA probe; and (ii) immunolabelling of kinetochore proteins with CREST autoimmune serum. VP-16 caused significant increases in the frequencies of MN at all meiotic stages studied. VP-16 induced MN showed significantly elevated frequencies of centromeric hybridization signals compared to the controls. Similarly, after CREST immunostaining the majority of MN induced by the drug showed kinetochore signals when meiotic S phase and diplotene-diakinesis were treated. This would suggest that most induced MN were due to lagging of whole chromosomes. However, more than 80% of the small MN observed were signal-positive and a large pool of minute MN almost exclusively (92%) contained a kinetochore or centromere-DNA signal. This indicates that VP-16 causes chromosome fragmentation at centromeres. In addition, arrested first division (MI) anaphase figures with stretched bivalent(s) at the spindle equator were observed when diplotene-diakinesis and MI were targeted. Moreover, many small and medium size MN had two centromere or kinetochore signals at opposite sides, suggesting that inhibition of topo II at MI causes lagging of whole bivalents. Together, these results indicate that VP-16 acts by several genotoxic mechanisms at male meiosis: (i) fragmentation of centromeres possibly as a result of inhibition of the DNA strand religation reaction in a topoisomerase II mediated decatenation process of sister centromeres; and (ii) the induction of aneuploidy as a result of failures in separation of homologous chromosome arms possibly due to disturbances of chiasma resolution and decatenation processes during MI. Our results indirectly suggest that topoisomerase II plays an important role in male meiosis and its activity is needed at the metaphase-anaphase transition of both meiotic divisions for proper chromosome disjunction.  相似文献   

16.
Site-specific DNA cleavage by topoisomerase II (EC 5.99.1.3) is induced by many antitumour drugs. Although human cells express two genetically distinct topoisomerase II isoforms, thus far the role and determinants of drug-induced DNA cleavage have been examined only for alpha. Here we report the first high-resolution study of amsacrine (mAMSA) induced DNA breakage by human topoisomerase II beta (overexpressed and purified from yeast) and a direct comparison with the recombinant alpha isoform. DNA cleavage in plasmid pBR322 and SV40 DNA was induced by alpha or beta in the absence or presence of the antitumour agent mAMSA, and sites were mapped using sequencing gel methodology. Low-resolution studies indicated that recombinant human alpha promoted DNA breakage at sites akin to those of beta, although some sites were only cleaved by one enzyme and different intensities were observed at some sites. However, statistical analysis of 70 drug-induced sites for beta and 70 sites for alpha revealed that both isoforms share the same base preferences at 13 positions relative to the enzyme cleavage site, including a very strong preference for A at +1. The result for recombinant alpha isoform is in agreement with previous studies using alpha purified from human cell lines. Thus, alpha and beta proteins apparently form similar ternary complexes with mAMSA and DNA. Previous studies have emphasized the importance of DNA topoisomerase II alpha; the results presented here demonstrate that beta is an in vitro target with similar site determinants, strongly suggesting that beta should also be considered a target of mAMSA in vivo.  相似文献   

17.
Five cell lines selected for resistance to the cytotoxicity of inhibitors of DNA topoisomerase II have point mutations in the gene that codes for the M(r) 170,000 form of this enzyme. In each case, the mutation results in an amino acid change in or near an ATP binding sequence of the M(r) 170,000 isozyme of topoisomerase II. We used single-strand conformational polymorphism analysis to screen for similar mutations in other drug-resistant cell lines or in leukemic cells from patients previously treated with etoposide or teniposide. We also analyzed the region of the gene that codes for amino acids adjacent to the tyrosine at position 804 of topoisomerase II which binds covalently to DNA. CEM/VM-1, CEM/VM-1-5, and HL-60/AMSA human leukemic cell lines were used as controls; 3 of 3 known mutations were detected by migration differences of polymerase chain reaction products from the RNA extracted from these three lines. A previously unknown mutation was found in the tyrosine 804 region of the M(r) 170,000 topoisomerase II expressed by CEM/VM-1 and CEM/VM-1-5 cells. Sequence analysis showed that substitution of a T for a C at nucleotide 2404 resulted in an amino acid change of a serine for a proline at amino acid 802. No mutations in any of the ATP binding sequences or in the tyrosine 804 region were detected in polymerase chain reaction products from RNA extracted from human leukemia HL-60/MX2 or CEM/MX1 cells (both cell lines selected for resistance to mitoxantrone) or in human myeloma 8226/Dox1V cells (selected for resistance by simultaneous exposure to doxorubicin and verapamil). No mutations were detected in polymerase chain reaction products from RNA extracted from blasts of 15 patients with relapsed acute lymphocytic leukemia, previously treated with etoposide or teniposide. We conclude that: (a) single-strand conformational polymorphism analysis is useful for screening for mutations in topoisomerase II; (b) resistance to the cytotoxicity of inhibitors of DNA topoisomerase II is not always associated with mutations in ATP binding sequences or the active site tyrosine region of M(r) 170,000 topoisomerase II; and (c) mutations similar to those detected in drug resistant cells selected in culture have not been identified in blast cells from patients with relapsed acute lymphocytic leukemia, previously treated with etoposide or teniposide.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号