首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DnaA protein of Escherichia coli is a sequence-specific DNA-binding protein required for the initiation of DNA replication from the chromosomal origin, oriC. It is also required for replication of several plasmids including pSC101, F, P-1, and R6K. A collection of monoclonal antibodies to DnaA protein has been produced and the primary epitopes recognized by them have been determined. These antibodies have also been examined for the ability to inhibit activities of DNA binding, ATP binding, unwinding of oriC, and replication of both an oriC plasmid, and an M13 single-stranded DNA with a proposed hairpin structure containing a DnaA protein-binding site. Replication of the latter DNA is dependent on DnaA protein by a mechanism termed ABC priming. These studies suggest regions of DnaA protein involved in interaction with DnaB protein, and in unwinding of oriC, or low-affinity binding of ATP.  相似文献   

3.
The Escherichia coli chromosomal origin contains several bindings sites for factor for inversion stimulation (FIS), a protein originally identified to be required for DNA inversion by the Hin and Gin recombinases. The primary FIS binding site is close to two central DnaA boxes that are bound by DnaA protein to initiate chromosomal replication. Because of the close proximity of this FIS site to the two DnaA boxes, we performed in situ footprinting with 1, 10-phenanthroline-copper of complexes formed with FIS and DnaA protein that were separated by native gel electrophoresis. These studies show that the binding of FIS to the primary FIS site did not block the binding of DnaA protein to DnaA boxes R2 and R3. Also, FIS appeared to be bound more stably to oriC than DnaA protein, as deduced by its reduced rate of dissociation from a restriction fragment containing oriC . Under conditions in which FIS was stably bound to the primary FIS site, it did not inhibit oriC plasmid replication in reconstituted replication systems. Inhibition, observed only at high levels of FIS, was due to absorption by FIS binding of the negative superhelicity of the oriC plasmid that is essential for the initiation process.  相似文献   

4.
The Escherichia coli DnaA protein is a sequence-specific DNA binding protein that promotes the initiation of replication of the bacterial chromosome, and of several plasmids including pSC101. Twenty-eight novel missense mutations of the E. coli dnaA gene were isolated by selecting for their inability to replicate a derivative of pSC101 when contained in a lambda vector. Characterization of these as well as seven novel nonsense mutations and one in-frame deletion mutation are described here. Results suggest that E. coli DnaA protein contains four functional domains. Mutations that affect residues in the P-loop or Walker A motif thought to be involved in ATP binding identify one domain. The second domain maps to a region near the C terminus and is involved in DNA binding. The function of the third domain that maps near the N terminus is unknown but may be involved in the ability of DnaA protein to oligomerize. Two alleles encoding different truncated gene products retained the ability to promote replication from the pSC101 origin but not oriC, identifying a fourth domain dispensable for replication of pSC101 but essential for replication from the bacterial chromosomal origin, oriC.  相似文献   

5.
Fis protein participates in the normal control of chromosomal replication in Escherichia coli. However, the mechanism by which it executes its effect is largely unknown. We demonstrate an inhibitory influence of purified Fis protein on replication from oriC in vitro. Fis inhibits DNA synthesis equally well in replication systems either dependent upon or independent of RNA polymerase, even when the latter is stimulated by the presence of HU or IHF. The extent of inhibition by Fis is modulated by the concentrations of DnaA protein and RNA polymerase; the more limiting the amounts of these, the more severe the inhibition by Fis. Thus, the level of inhibition seems to depend on the ease with which the open complex can be formed. Fis-mediated inhibition of DNA replication does not depend on a functional primary Fis binding site between DnaA boxes R2 and R3 in oriC, as mutations that cause reduced binding of Fis to this site do not affect the degree of inhibition. The data presented suggest that Fis prevents formation of an initiation-proficient structure at oriC by forming an alternative, initiation-preventive complex. This indicates a negative role for Fis in the regulation of replication initiation.  相似文献   

6.
A 3.5-kb DNA fragment containing the dnaA region of Mycobacterium smegmatis has been hypothesized to be the chromosomal origin of replication or oriC (M. Rajagopalan et al., J. Bacteriol. 177:6527-6535, 1995). This region included the rpmH gene, the dnaA gene, and a major portion of the dnaN gene as well as the rpmH-dnaA and dnaA-dnaN intergenic regions. Deletion analyses of this region revealed that a 531-bp DNA fragment from the dnaA-dnaN intergenic region was sufficient to exhibit oriC activity, while a 495-bp fragment from the same region failed to exhibit oriC activity. The oriC activities of plasmids containing the 531-bp sequence was less than the activities of those containing the entire dnaA region, suggesting that the regions flanking the 531-bp sequence stimulated oriC activity. The 531-bp region contained several putative nine-nucleotide DnaA-protein recognition sequences [TT(G/C)TCCACA] and a single 11-nucleotide AT-rich cluster. Replacement of adenine with guanine at position 9 in five of the putative DnaA boxes decreased oriC activity. Mutations at other positions in two of the DnaA boxes also decreased oriC activity. Deletion of the 11-nucleotide AT-rich cluster completely abolished oriC activity. These data indicate that the designated DnaA boxes and the AT-rich cluster of the M. smegmatis dnaA-dnaN intergenic region are essential for oriC activity. We suggest that M. smegmatis oriC replication could involve interactions of the DnaA protein with the putative DnaA boxes as well as with the AT-rich cluster.  相似文献   

7.
DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, is activated by binding to ATP in vitro. We introduced site-directed mutations into two amino acids of the protein conserved among various ATP-binding proteins and examined functions of the mutated DnaA proteins, in vitro and in vivo. Both mutated DnaA proteins (Lys-178 --> Ile or Asp-235 --> Asn) lost the affinity for both ATP and ADP but did maintain binding activity for oriC. Specific activities in an oriC DNA replication system in vitro were less than one-tenth those of the wild-type protein. Assay of the generation of oriC sites sensitive to P1 nuclease, using the mutated DnaA proteins, revealed a defect in induction of the duplex opening at oriC. On the other hand, expression of each mutated DnaA protein in the temperature-sensitive dnaA46 mutant did not complement the temperature sensitivity. We suggest that Lys-178 and Asp-235 of DnaA protein are essential for the activity needed to initiate oriC DNA replication in vitro and in vivo and that ATP binding to DnaA protein is required for DNA replication-related functions.  相似文献   

8.
The formation of nucleoprotein complexes between the Escherichia coli initiator protein DnaA and the replication origin oriC was analysed in vitro by band-shift assays and electron microscopy. DnaA protein binds equally well to linear and supercoiled oriC substrates as revealed by analysis of the binding preference to individual DnaA boxes (9-mer repeats) in oriC, and by a competition band-shift assay. DnaA box R4 (oriC positions 260-268) binds DnaA preferentially and in the oriC context with higher affinity than expected from its binding constant. This effect depends on oriC positions 249 to 274, is enhanced by the wild-type sequence in the DnaA box R3 region, but is not dependent on Dam methylation or the curved DNA segment to the right of oriC. DnaA binds randomly to the DnaA boxes R1, M, R2 and R3 in oriC with no apparent cooperativity: the binding preference of DnaA to these sites was not altered for templates with mutated DnaA box R4. In the oriC context, DnaA box R1 binds DnaA with lower affinity than expected from its binding constant, i.e. the affinity is reduced to approximately that of DnaA box R2. Higher protein concentrations were required to observe binding to DnaA box M, making this low-affinity site a novel candidate for a regulatory dnaA box.  相似文献   

9.
DnaA protein and the Escherichia coli chromosomal origin (oriC) form an initial complex at an early stage in the initiation of DNA replication. We have used electron microscopy to determine which structure among the several formed in the reconstitution of this multicomponent system is the replicatively active complex. One distinctive structure could be correlated with activity and localized to oriC, whilst several others could not. Formation of an open complex in the next stage of initiation was accompanied by the presence of a structure similar in size and shape to that of the functional initial complex. Whereas the initial complex was observed with either ATP or the ADP-forms of DnaA protein, only the ATP-form was effective in producing the open complex. Mutagenesis of several DNA sequence elements in oriC, known to be important for replication, was employed to determine the effects of these alterations on formation of the initial complex. As judged by electron microscopy and by functional assays, the region containing the four 9-mer dnaA boxes proved to be essential for the formation of the initial complex, while the three contiguous AT-rich 13-mers, known sites for opening of oriC, were not.  相似文献   

10.
In vivo studies suggest that the Escherichia coli SeqA protein modulates replication initiation in two ways: by delaying initiation and by sequestering newly replicated origins from undergoing re-replication. As a first approach towards understanding the biochemical bases for these effects, we have examined the effects of purified SeqA protein on replication reactions performed in vitro on an oriC plasmid. Our results demonstrate that SeqA directly affects the biochemical events occurring at oriC. First, SeqA inhibits formation of the pre-priming complex. Secondly, SeqA can inhibit replication from an established pre-priming complex, without disrupting the complex. Thirdly, SeqA alters the dependence of the replication system on DnaA protein concentration, stimulating replication at low concentrations of DnaA. Our data suggest that SeqA participates in the assembly of initiation-competent complexes at oriC and, at a later stage, influences the behaviour of these complexes.  相似文献   

11.
The Spo0J protein of Bacillus subtilis is required for normal chromosome segregation and forms discrete subcellular assemblies closely associated with the oriC region of the chromosome. Here we show that duplication of Spo0J foci occurs early in the DNA replication cycle and that this requires the initiation of DNA replication at oriC but not elongation beyond the nearby STer sites. Soon after duplication, sister oriC/Spo0J foci move rapidly apart to achieve a fixed separation of about 0.7 microm, reminiscent of the segregation of eukaryotic chromosomes on the mitotic spindle. The magnitude of the fixed separation distance may explain how chromosome segregation is kept in close register with cell growth and the initiation mass for DNA replication. It could also explain how segregation can proceed accurately in the absence of cell division. The kinetics of focal separation suggest that one role of Spo0J protein may be to facilitate formation of separate sister oriC complexes that can be segregated.  相似文献   

12.
We examined effects on supercoiled DNA topology of DnaA protein, the initiator protein of chromosomal DNA replication in Escherichia coli. The activity was identified in an analysis of plasmid DNA incubated with DnaA protein and DNA topoisomerase I. In Superose 12 gel filtration chromatography, the activity coeluted with DnaA protein. Incubation of DnaA protein with DNA at temperatures over 24 degrees C was required for this activity, which was observed with either oriC plasmid or the replicative form I of phi X174 with no DnaA box. As binding of ATP or ADP to DnaA protein prevented the activity of DnaA protein on DNA topology, binding of the adenine nucleotide may regulate the activity.  相似文献   

13.
The seqA gene negatively modulates replication initiation at the E. coli origin, oriC. seqA is also essential for sequestration, which acts at oriC and the dnaA promoter to ensure that replication initiation occurs exactly once per chromosome per cell cycle. Initiation is promoted by full methylation of GATC sites clustered in oriC; sequestration is specific to the hemimethylated forms generated by replication. SeqA protein purification and DNA binding are described. SeqA interacts with fully methylated oriC strongly and specifically. This reaction requires multiple molecules of SeqA and determinants throughout oriC, including segments involved in open complex formation. SeqA interacts more strongly with hemimethylated DNA; in this case, oriC and non-oriC sequences are bound similarly. Also, binding of hemimethylated oriC by membrane fractions is due to SeqA. Direct interaction of SeqA protein with the replication origin is likely to be involved in both replication initiation and sequestration.  相似文献   

14.
Hydrolysis of ATP bound to DnaA protein by its intrinsic ATPase activity negatively controls chromosomal DNA replication in Escherichia coli. We developed a new in vitro assay system for ATP hydrolysis, which makes feasible a search for factors affecting the ATPase activity of DnaA protein. A crude cell extract enhanced the hydrolysis of ATP bound to DnaA protein, in a dose-dependent manner. Gel-filtration analyses revealed a single entity of the stimulation factor for the ATP hydrolysis and an apparent molecular mass of 170 kDa. The stimulation activity for ATP hydrolysis coeluted with the inactivation activity for DnaA protein initiating an oriC DNA replication, as determined by anion-exchange and gel-filtration column chromatographies. Activity of the stimulation factor required DNA and ATP. These observations suggested that IdaA protein, a previously described negative factor for DnaA protein, inactivated DnaA protein through stimulation of the hydrolysis of ATP bound to DnaA protein.  相似文献   

15.
Previously, we have purified and characterized DNA helicase III from the yeast Saccharomyces cerevisiae [Shimizu, K. and Sugino, A. (1993) J. Biol. Chem. 268, 9578-9584]. Here, we have further characterized DNA helicase III activity. It was found that the combined action of the helicase III, yeast DNA topoisomerase I (yTop I), and yeast RPA protein on a covalently closed, circular DNA generates a highly underwound DNA species that has been called form I* or form U. Furthermore, these underwound structures can be accessed by yeast DNA polymerase I (alpha)-primase to initiate DNA synthesis. These reactions mimic in vivo initiation of chromosomal DNA replication. In order to clone the gene encoding DNA helicase III, a partial amino acid sequence of the purified DNA helicase III polypeptide was determined. Using a mix oligonucleotides synthesized based on the amino acid sequence of the helicase, we cloned the gene encoding the helicase III and found it to be identical to YER176W (HEL1) on chromosome V. The amino acid sequence predicted from the nucleotide sequence of the gene has conserved DNA helicase domains that are highly homologous to those of DNA helicases required for DNA replication. However, complete deletion of the gene from the chromosome did not result in any growth defect, suggesting that the gene product is not required for DNA synthesis or that it is functionally substituted by other helicase(s). Furthermore, the deletion strain does not exhibit sensitivity to any DNA-damaging reagents, although it is hypersensitive to calcofluor white, hygromycin, and papulacandin.  相似文献   

16.
DnaA protein is an initiator for chromosomal DNA replication in E. coli. We have examined the function of the protein to answer the following four questions; 1. How DnaA protein is inactivated after DNA replication for the suppression of re-initiation? 2. How DnaA protein is activated for the initiation of DNA replication? 3. Does DnaA protein have functions other than that for DNA replication? 4. Is DnaA protein is a good target for new antibiotics? In this review, I summarize our recent studies for these questions.  相似文献   

17.
Coupling of leading- and lagging-strand DNA synthesis at replication forks formed at Escherichia coli oriC has been studied in vitro using a replication system reconstituted with purified proteins. At low concentrations of primase (8 nM), the major replication products were multigenome-length molecules, generated by a rolling circle-type mechanism, and unit-length molecules. Rolling circle DNA replication was inhibited at high concentrations of primase (80 nM) and the major replication products were half-unit-length leading strands and a distinct population of short Okazaki fragments. At low primase concentrations, an asymmetric mode of DNA synthesis occurred. Each strand was made independently and initiation could occur outside of oriC. At high primase concentrations, initiation occurred exclusively at oriC and two coupled replication forks proceeded bidirectionally around the plasmid. Presumably, at low concentrations of primase, DnaB (the replication fork helicase) unwound the plasmid DNA before replication forks could form, leading to initiation at sites other than oriC. On the other hand, high concentrations of primase resulted in successful capture of the helicase leading to the formation at oriC of coupled replication forks capable of coordinated leading- and lagging-strand synthesis.  相似文献   

18.
19.
Specific binding of the plasmid-encoded protein, TrfA, and the Escherichia coli DnaA protein to the origin region (oriV) is required for the initiation of replication of the broad host range plasmid RK2. It has been shown that the DnaA protein which binds to DnaA boxes upstream of the TrfA-binding sites (iterons) cannot by itself form an open complex, but it enhances the formation of the open complex by TrfA (Konieczny, I., Doran, K. S., Helinski, D. R., Blasina, A. (1997) J. Biol. Chem. 272, 20173). In this study an in vitro replication system is reconstituted from purified TrfA protein and E. coli proteins. With this system, a specific interaction between the DnaA and DnaB proteins is required for delivery of the helicase to the RK2 origin region. Although the DnaA protein directs the DnaB-DnaC complex to the plasmid replication origin, it cannot by itself activate the helicase. Both DnaA and TrfA proteins are required for DnaB-induced template unwinding. We propose that specific changes in the nucleoprotein structure mediated by TrfA result in a repositioning of the DnaB helicase within the open origin region and an activation of the DnaB protein for template unwinding.  相似文献   

20.
In Escherichia coli, the origin of DNA replication, oriC, becomes transiently hemimethylated at the GATC sequences immediately after initiation of replication and this hemimethylated state is prolonged because of its sequestration by a fraction of outer membrane. This sequestration is dependent on a hemimethylated oriC binding protein such as SeqA. We previously isolated a clone of phage lambda gt11 called hobH, producing a LacZ fusion protein which recognizes hemimethylated oriC DNA. Very recently, Thaller et al. (FEMS Microbiol. Lett. 146 (1997) 191-198) found that the same DNA segment encodes a non-specific acid phosphatase, and named the gene aphA. We show here that the interruption of the aphA reading frame by kanamycin resistance gene insertion, abolishes acid phosphatase (NAP) activity. Interestingly, in the membrane of the null mutant, the amount of SeqA protein is about six times higher than that in the parental strain, suggesting the existence of a regulatory mechanism between SeqA and NAP expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号