首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文建立了包括间隙泄漏在内的涡轮叶片三维分子动力学抽气模型.运用MonteCarlo方法计算单叶列的抽气性能,研究了涡轮分子泵中运动叶列顶端与泵壁间的间隙泄漏效果.计算结果展示出间隙相对叶列长度的大小(间隙比)对压缩比有很大影响,尤其是在高的叶列运动速度和重分子量气体下抽气.间隙效果对抽速影响较小.  相似文献   

2.
采用蒙特卡洛方法计算单级涡轮叶列传输几率,引入气体分子与固体壁面反射适应系数模型,评估不同反射条件对单级涡轮叶列抽气特性的影响。采用积分中值法计算涡轮叶列传输几率,提高涡轮级抽气特性的计算精度。采用分段流态判别法计算牵引通道的抽速和压缩比,减少牵引级抽气特性的计算误差。提出涡轮级与牵引级之间的三种过渡结构,实现复合分子泵抽气特性的级间匹配,提高复合分子泵的性能。提出牵引级阻挡结构和分段式结构,有效减少牵引转子与定子间的间隙泄漏,提高复合分子泵的整体性能。通过算法改进,提高了涡轮分子泵抽气特性的计算精度;通过结构优化,提高复合分子泵抽气性能,为高性能复合分子泵开发奠定了基础。  相似文献   

3.
在入口管路束流效应和涡轮端盖反射作用的双重因素影响下,以纯分子流态经泵前入口管道流向涡轮分子泵环形一级动叶列抽气面处的气体分子,其入射密度是不均匀分布的。本文基于自由分子流态基本假设,建立入口直圆管道计算模型,采用试验粒子蒙特卡洛方法,利用Molflow+软件,模拟被抽气体分子经泵入口到涡轮叶列抽气面的飞行过程及行为;数值计算得到气体分子到达涡轮转子一级动叶列入射平面的密度分布和气体通过入口管道的传输几率,并分别经回归分析拟合给出二者的计算公式,可为涡轮分子泵抽气性能的后续研究提供更精确的理论数据;算例证明,以此分布计算分子泵一级动叶列的正向传输几率,比采用均匀分布假设的积分中值法的计算结果偏小。  相似文献   

4.
现代涡轮分子泵理论的研究   总被引:1,自引:0,他引:1  
由于涡轮分子泵叶轮的线速度比较低(一般小于氮气分子的热运动速度),使得原有的叶列抽气模型不符合泵的实际工作情况。本文用传输几率理论对涡轮分子泵的抽气机理作了探讨,提出了适合于叶片速度比在0~1之间的抽气模型,为改善和提高现代涡轮分子泵在低叶片速度比条件下的抽气性能提供了理论依据。从同样的机理出发,还可以分析原有组合叶列的理论结果与实验结果存在偏差的原因,并建立了组合叶列的修正理论计算公式。最后用实验验证了本文的分析结果。  相似文献   

5.
涡轮分子泵组合叶列几何参数优化设计方法的研究   总被引:1,自引:1,他引:0  
王晓冬  巴德纯 《真空》1999,(1):23-26
本文在分析了组合叶列内在抽气机理的基础上,以涡轮叶片的基本几何参数:叶片倾角,节弦比为设计变量,以气体连续性方程和最大抽速为约束条件,把压缩比做为目标函数,给出求压缩比极大值的计算方法,本文对涡轮分子泵提高抽气性能,改进结构具有实际意义。  相似文献   

6.
王晓冬  朱岳 《真空》1992,(4):1-7
本文对牵引分子泵抽气机理进行了深入分析,考虑了通道返流和工作间隙泄漏对泵抽气性能的影响。采用有限差分法对通道内气体分子宏观运动速度分布进行了计算,提 出了牵引分子泵二维抽气理论。  相似文献   

7.
采用数据回归方法,建立了不同叶片倾角、节弦比条件下单级涡轮叶片正反向传输几率与速度比的数学关系式,通过计算机编程可直接获得单级涡轮叶片的正反向传输几率,进而求出涡轮叶片的抽气性能,提高了计算效率。分别采用涡轮叶片几何中值参数计算方法、沿涡轮叶片齿长逐段积分方法,对单级涡轮叶片和涡轮分子泵的抽气性能进行了计算,并与实验结果进行了对比。发现:采用涡轮叶片几何中值参数计算涡轮叶片抽气性能存在误差,对涡轮分子泵抽气性能的计算值偏高,其计算误差远大于分段积分法的计算误差,后者更适用于对分子泵抽气性能的设计计算。  相似文献   

8.
杨乃恒 《真空》1991,(3):11-14
为了进一步提高泵的性能,现代涡轮分子泵的叶列形状越来越复杂,因此现有的一些计算方法使用时有一定的困难。然而,Y·Wu[1][2]提出的几率矩阵法能有效地解决各种复杂形状的叶列性能计算问题,但计算的工作量比较大,尤其是将二维模型改为三维的模型时,这个问题就更为突出。为此,我们利用简化的几率矩阵法,解决了三维模型的计算问题,节省了计算时间,理论计算与实验结果基本上一致[3]。  相似文献   

9.
涡轮分子泵中存在着通过分子泵各级的泄漏现象,影响了分子泵实际的压缩比。如果在计算压缩比时不考虑这个影响,那么实际测得的压缩比大多远小于计算所得。对于从高压强级到低压强级的泄漏所产生的影响,本文作了一个理论估算。提出了一个简单模型亚计算泄漏引起的压缩比的降低。  相似文献   

10.
本文利用涡轮分子泵叶片的微分电路模型,导出了涡轮分子泵压缩比与泄漏间隙、叶轮间距之间的简明关系,并提出了压缩比综合修正的方法。计算结果与实测值合得很好,并表明压缩比与叶轮间距之间的关系并不象分子拖动理论预期的那样密切。  相似文献   

11.
本文介绍了积分方程法计算涡轮分子泵叶列传输几率的数学模型和计算机程序框图,并用自编的电算程序对叶片角α=10°~45°,节弦比S0=0.5~1.8,速度比C=-1.0~1.0范围内的各种不同参数的叶列传输几率M12和M21进行了计算,其值见附表1~14,从而为涡轮分子泵进行定量的理论分析和理论计算提供了必须的手段.  相似文献   

12.
复合分子泵作为氦质谱检漏仪的重要部件,其自身的几何参数在影响抽气性能的同时也影响检漏仪的检测性能.基于分子泵抽气基本理论,建立了复合分子泵牵引级的计算模型,通过改变螺旋升角、牵引槽深度和转子与定子的间隙,分别计算了复合分子泵牵引级对氦质谱检漏仪涉及到的2种气体——空气和氦气在不同工况下的抽气性能,研究了复合分子泵牵引级...  相似文献   

13.
储继国 《真空》1989,(2):58-60
本文分析了涡轮分子泵和拖动分子泵抽气机理的不同物理图象,并论证了短叶片涡轮分子泵的抽气作用是这二种分子泵抽气机理同时作用的结果,从而,这种泵具有涡轮分子泵和拖动分子泵的共同优点。  相似文献   

14.
涡轮分子泵广泛应用于清洁高真空的获得.本文采用实验粒子蒙特卡洛算法,使用COMSOL对二维模型进行计算,更新了单级叶列抽气性能参数数据库,并在此基础上提出了计算涡轮叶列传输几率的新方法——面积加权法,同时根据改进算法编写计算程序.面积加权法更加接近于涡轮叶列的工况,使用此方法提高了计算准确度,为涡轮分子泵组合叶列的计算...  相似文献   

15.
油蒸汽流泵的抽速表达式   总被引:1,自引:1,他引:1  
通常将油扩散泵和扩散喷射泵(油增压泵),统称为油蒸汽流泵。其工作原理与涡轮分子泵相似。在涡轮分子泵中。由高速旋转的叶片带走气体分子,以完成抽气过程。而在油蒸汽流泵中,抽气过程是由各级喷嘴吹出的高速蒸汽射流,把被抽气体(空气)分子携带到前级压力端。实践证明,无论是涡轮分子泵、油扩散泵或扩散喷射泵,在其相应压力范围内,都具有平滑的抽速特性曲线。 多年来各国学者已对油蒸汽流泵的抽气过程,进行过深刻的分析和讨论。最近德国学者M.Wutz更从气体动力学的角度来探讨油扩散泵的机理,提出了泵的何氏系数的计算表达式。国内许多专家…  相似文献   

16.
《真空》2017,(2)
在研究螺杆泵各项间隙构成原理的基础上,通过CFX软件对同一级齿顶圆周间隙模型进行模拟计算,分析了流体温度、间隙高度、泄露通道宽度对泄漏量的影响。研究结果表明:流体温度对通过泄漏通道的质量流量影响显著,且排气级气体温度不宜过低;螺杆泵稳定运行时的最大齿顶圆周间隙高度应有一定的限制;在相同条件下泄漏量随泄露通道宽度增加而减小。计算结果对双螺杆真空泵腔内间隙的设计计算和优化提供了模拟计算方法和理论基础,对提高双螺杆真空泵的抽气性能有着积极的意义。  相似文献   

17.
混合分段算法计算涡轮分子泵的压缩比   总被引:1,自引:0,他引:1  
为了进一步完善分子泵在整个流态区域内抽气性能的计算,本文分别对主要用于描述连续流体运动问题的连续流态方程法和主要用于描述分子流态问题的特征系数法进行了评价,两种方法在计算涡轮分子泵压缩比时有各自的适用范围。为了提高涡轮分子泵在过渡流态下压缩比的计算精度,本文在比较两种方法的计算精度和适用范围的基础上提出了混合分段算法。通过与实验值的对比,发现通过混合分段算法得到的最大压缩比与实验值的最大误差为10.5%,相对于连续流态方程法和特征系数法分别减小了34.0%和44.7%,证实了混合分段算法的适用性。该方法可以分析整个流态区域内涡轮分子泵的抽气性能,为分子泵压缩比的全流域计算提供参考。  相似文献   

18.
为了进一步完善分子泵在整个流态区域内抽气性能的计算,本文分别对主要用于描述连续流体运动问题的连续流态方程法和主要用于描述分子流态问题的特征系数法进行了评价,两种方法在计算涡轮分子泵压缩比时有各自的适用范围。为了提高涡轮分子泵在过渡流态下压缩比的计算精度,本文在比较两种方法的计算精度和适用范围的基础上提出了混合分段算法。通过与实验值的对比,发现通过混合分段算法得到的最大压缩比与实验值的最大误差为10.5%,相对于连续流态方程法和特征系数法分别减小了34.0%和44.7%,证实了混合分段算法的适用性。该方法可以分析整个流态区域内涡轮分子泵的抽气性能,为分子泵压缩比的全流域计算提供参考。  相似文献   

19.
采用蒙特卡洛方法对溅射离子泵腔抽气通道内的气体流动规律进行数值模拟。建立了不同溅射离子泵结构的几何模型,计算了气体分子在不同泵腔结构中进出比例,分析了腔结构对反流量的影响,得到了抽气组件在不同泵腔结构中的抽气效率,探讨各种类型腔结构的抽气特点;最后计算了舱体高度对抽气性能的影响。结果表明:在相同条件下,I型泵腔结构抽气性能最好,T型泵腔结构次之,双侧型泵腔结构抽气性能最差。  相似文献   

20.
针对涡轮分子泵的入口管道束流效应和涡轮端盖反射效应对传输几率的不利影响、以及大口径涡轮分子泵与小型仪器相连接的难题,本文提出分子泵入口结构的改进方案:将涡轮转子的平板端盖改成锥形反射屏结构,把过渡连接件做成圆弧过渡段结构。文中根据实际结构参数,建立了不同结构类型的计算模型,采用试验粒子蒙特卡洛方法,基于自由分子流态基本假设,利用Molflow+软件,计算了各个结构模型的传输几率。计算结果表明:当倾角α的取值范围在60°~70°、圆锥底角β的取值范围在25°~45°之间时,理论上可将涡轮分子泵的抽气速率提升5%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号