首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multistep linear prediction approach is presented for blind channel estimation, multiuser interference (MUI) suppression, and detection of asynchronous short-code direct sequence code division multiple access signals in multipath channels. Only the spreading code of the desired user is assumed to be known; its transmission delay may be unknown. We exploit the previously proposed multistep linear prediction approach for blind multiple-input multiple-output channel estimation in conjunction with the structure imposed by the desired user's spreading code sequence. With the knowledge of the desired user's code sequence, only the second-order statistics of the data are needed under certain sufficient conditions on the underlying multiuser MIMO transfer function. Based on the desired user's channel estimate, a linear minimum mean square error filter is designed for simultaneous equalization and MUI suppression. Three illustrative simulation examples are presented  相似文献   

2.
A new approach to blind and semi-blind channel estimation for space-time block codes (STBCs) is presented. By exploiting the recently proposed generalized space-time block code framework, an STBC system is reduced from multiple-input multiple-output to a single-input multiple-output system. A conventional blind algorithm based on the subspace algorithm is then used to identify the channel impulse responses and achieve equalization. Simulation results demonstrate the performance of the proposed algorithm and a comparable scheme.  相似文献   

3.
A blind asynchronous single-user code-reuse direct sequence code division multiple access (CDMA) array receiver is proposed for the uplink. By assigning each short PN-code more than once, code reuse allows the number of active users to be increased beyond the spreading gain. The proposed receiver is based on a blind single-code multipath joint space-time channel estimation technique that utilizes the concept of the spatio-temporal array manifold, in conjunction with a novel preprocessor, to deal with the multipath problem. From the estimated space-time channel parameters of a particular active code, the subset of parameters of a specific co-code user is then identified, and a single-user receiving weight vector is finally formed. The proposed approach is a subspace type method, and therefore, it is "near-far" resistant. Furthermore, in contrast to existing receivers such as the space-time decorrelating detector, the proposed receiver weight vector is tolerant to partial channel estimation errors and the incomplete estimation of channel parameters. The theoretical framework is supported by computer simulation studies.  相似文献   

4.
A code-constrained inverse filter criterion based approach is presented for blind detection of asynchronous short-code direct sequence code division multiple access (DS-CDMA) signals in multipath channels. Only the spreading code of the desired user is assumed to be known; its transmission delay may be unknown. We focus on maximization of the normalized fourth cumulant of inverse filtered (equalized) data with respect to (w.r.t.) the equalizer coefficients subject to the equalizer lying in a subspace associated with the desired user's code sequence. Constrained maximization leads to extraction of the desired user's signal, whereas unconstrained maximization leads to the extraction of any one of the active users. Illustrative simulation examples are provided  相似文献   

5.
A code-aided constant modulus algorithm (CMA) based approach is presented for blind detection of asynchronous short-code DS-CDMA (direct sequence code division multiple access) signals in intersymbol interference (ISI)/multipath channels. Only the spreading code of the desired user is assumed to be known; its transmission delay may be unknown. A linear equalizer is designed by minimizing the Godard/CMA cost function of the equalizer output with respect to the equalizer coefficients subject to the fact that the equalizer lies in a subspace associated with the desired user's code sequence. Constrained CMA leads to the extraction of the desired user's signal whereas unconstrained minimization leads to the extraction of any one of the active users. The results are further improved by using unconstrained CMA initialized by the results of the code-aided CMA. Identifiability properties of the approach are analyzed. Illustrative simulation examples are provided  相似文献   

6.
In this paper, we present a group of subspace code-timing estimation algorithms for asynchronous code-division multiple-access (CDMA) systems with bandlimited chip waveforms. The proposed schemes are frequency-domain based techniques that exploit a unique structure of the received signal in the frequency domain. They can be implemented either blindly or in a training-assisted manner. The proposed blind code-timing estimators require only the spreading code of the desired user, whereas the training-assisted schemes assume the additional knowledge of the transmitted symbols of the desired user. Through a design parameter of user choice, the proposed schemes offer flexible tradeoffs between performance, user capacity, and complexity. They can deal with both time- and frequency-selective fading channels. Numerical simulations show that the proposed schemes are near-far resistant, and compare favorably to an earlier subspace code-timing estimation scheme that is implemented in the time domain.  相似文献   

7.
任爱锋  殷勤业  罗铭 《通信学报》2005,26(7):114-118
基于子空间方法的无线信道盲估计由于其算法的固有特性,使得估计结果与实际信道之间存在一个不确定复系数,无法得到无线信道的精确估计。在利用子空间分解方法对空时编码多输入多输出MC-CDMA系统下行频率选择性信道盲估计的基础上,利用发射符号的有限码集特性,将单载波系统下的模糊复系数盲辨识方法推广到多载波多输入多输出系统,从而得到信道的精确估计。Monte-Carlo仿真表明,在信噪比较低的情况下,本方法的信道估计误差仍然较小。  相似文献   

8.
We present a filterbank approach to blind code synchronization for asynchronous direct-sequence (DS) code-division multiple-access (CDMA) systems. The key idea of the proposed scheme is to first pass the received signal through a bank of filters, which are designed to enhance signals of interest and suppress interference/noise, and then to derive the code timing from the filtered data. The only required knowledge by the proposed filterbank scheme is the spreading code of the desired user. It can be used in various environments, including frequency-nonselective and frequency-selective, time-invariant, and time-varying fading channels. It can deal with colored channel noise and unmodeled interference, such as inter-cell interference (ICI) and narrowband interference. It has relatively low complexity and can be readily implemented using standard adaptive algorithms. We show that under mild conditions, the proposed scheme yields statistically consistent [in signal-to-noise ratio (SNR)] code timing estimates, irrespective of the strength of the interference and with only a finite number of data samples. We also derive an unconditional Cramer-Rao bound (UCRB), which serves as a lower bound for all unbiased blind code synchronization schemes. Numerical results indicate that the proposed scheme compares favorably with a popular subspace-based method in terms of user capacity, near-far resistance, and robustness to time-varying fading and unmodeled interference.  相似文献   

9.
Blind detection of a desired user's signal in a multirate direct sequence code division multiple access (DS-CDMA) system [using either variable sequence length (VSL) or multicode (MC) access] is considered. A code-constrained inverse filter criterion (IFC)-based blind detector for equal-rate CDMA signals to detect a desired user's signal was presented by Tugnait and Li (2001). The IFC method exploits the higher order statistics of the data. In multirate CDMA systems, a high-rate user signal may be treated as the superposition of several virtual basic-rate signals. The code-constrained IFC-based detector may be used to detect a given basic-rate virtual signal. This, however, does not solve the problem of combining the detected virtual basic-rate signals to yield the original high-rate signal since the former may be delayed by different equalization delays, may be multiply extracted, and may be in different "order." In this paper, novel approaches combining the code-constrained IFC and a penalty function are developed to cope with this problem for VSL and MC multirate access methods. Global minima of the proposed cost functions are analyzed. Three illustrative simulation examples are presented, including an example where the proposed algorithms are compared with an existing subspace approach (and its modifications), a clairvoyant matched filter receiver, and a known channel linear minimum mean-square error (MMSE) receiver.  相似文献   

10.
A blind adaptive technique for signal demodulation in multipath code-division multiple-access (CDMA) communication channels is proposed. This technique is based on signal subspace estimation. The receiver employs a bank of linear filters (decorrelating filters or linear MMSE filters) at the front end to mitigate the multiple-access interference and the multipath interference. A channel estimator is used to estimate the channel state for diversity combining. It is shown that through the use of signal subspace estimation, both the decorrelating filterbank and the linear MMSE filterbank can be obtained blindly, i.e., they can be estimated from the received signal with the prior knowledge of only the signature waveform of the desired user. Two forms of the subspace-based linear filterbanks are developed and their equivalence in terms of the interference suppression capability is established. These subspace-based blind adaptive interference suppression techniques require, at each symbol epoch, the eigenvalues and the eigenvectors of an appropriate signal subspace, which ran be obtained using computationally efficient sequential adaptive eigendecomposition (subspace tracking) algorithms. Moreover, a blind adaptive method for estimating the channel state is developed, which also produces the postcombining decision statistic as a byproduct  相似文献   

11.
This paper considers the problem of joint carrier offset and code timing estimation for code-division multiple-access (CDMA) systems. In contrast to existing schemes that require nonlinear iterative searches over the multidimensional parameter space, this paper proposes a blind estimator that provides an algebraic solution to the joint parameter estimation problem. By exploiting the subspace structure of the observed signal, the multiuser estimation is first decoupled into a series of single-user estimation problems, and then analytical tools of polynomial matrices are invoked for joint carrier and code timing estimation of a single user. The proposed estimator is near-far resistant. It can deal with frequency-selective and time-varying channels. The performance of the proposed scheme is examined analytically by a first-order perturbation analysis. The authors also derive an unconditional Crame/spl acute/r-Rao bound (CRB) that is conditioned neither on fading coefficients nor information symbols; as such, the CRB is considered a suitable lower bound for blind methods. Numerical examples are presented to evaluate and compare the proposed and a multidimensional search (MD-search)-based scheme.  相似文献   

12.
Blind decorrelating RAKE receivers for long-code WCDMA   总被引:3,自引:0,他引:3  
The problem of blind and semiblind channel estimation and symbol detection is considered for long-code wideband code division multiple access (CDMA) systems, including systems with multirate and multicode transmissions. A decorrelating matched filter, implemented efficiently in state-space, eliminates multiaccess interference and produces a bank of vector processes. Each vector process spans a one-dimensional (1-D) subspace from which channel parameters and data symbols of one user are estimated jointly by least squares. A new identifiability condition is established, which suggests that channels unidentifiable, in short-code CDMA systems are almost surely identifiable when aperiodic spreading codes are used. The decorrelating matched filter is implemented efficiently based on time-varying state-space realizations that exploit the structure of sparsity of the code matrix. The mean square error of the estimated channel is compared to the Cramer-Rao bound, and a bit error rate (BER) expression for the proposed algorithm is presented.  相似文献   

13.
We consider the blind multiuser detection problem for asynchronous DS-CDMA systems operating in a multipath environment. Using only the spreading code of the desired user, we first estimate the column vector subspace of the channel matrix by multiple linear prediction. Then, zero-forcing detectors and MMSE detectors with arbitrary delay can be obtained without explicit channel estimation. This avoids any channel estimation error, and the resulting methods are therefore more robust and more accurate. Corresponding batch algorithms and adaptive algorithms are developed. The new algorithms are extremely near-far resistant. Simulations demonstrate the effectiveness of these methods  相似文献   

14.
Blind multiuser detection: a subspace approach   总被引:24,自引:0,他引:24  
A new multiuser detection scheme based on signal subspace estimation is proposed. It is shown that under this scheme, both the decorrelating detector and the linear minimum-mean-square-error (MMSE) detector can be obtained blindly, i.e., they can be estimated from the received signal with the prior knowledge of only the signature waveform and timing of the user of interest. The consistency and asymptotic variance of the estimates of the two linear detectors are examined. A blind adaptive implementation based on a signal subspace tracking algorithm is also developed. It is seen that compared with the previous minimum-output-energy blind adaptive multiuser detector, the proposed subspace-based blind adaptive detector offers lower computational complexity, better performance, and robustness against signature waveform mismatch. Two extensions are made within the framework of signal subspace estimation. First, a blind adaptive method is developed for estimating the effective user signature waveform in the multipath channel. Secondly, a multiuser detection scheme using spatial diversity in the form of an antenna array is considered. A blind adaptive technique for estimating the array response for diversity combining is proposed. It is seen that under the proposed subspace approach, blind adaptive channel estimation and blind adaptive array response estimation can be integrated with blind adaptive multiuser detection, with little attendant increase in complexity  相似文献   

15.
The problem of blind demodulation of multiuser information symbols in a high-rate code-division multiple-access (CDMA) network in the presence of both multiple-access interference (MAI) and intersymbol interference (ISI) is considered. The dispersive CDMA channel is first cast into a multiple-input multiple-output (MIMO) signal model framework. By applying the theory of blind MIMO channel identification and equalization, it is then shown that under certain conditions the multiuser information symbols can be recovered without any prior knowledge of the channel or the users' signature waveforms (including the desired user's signature waveform), although the algorithmic complexity of such an approach is prohibitively high. However, in practice, the signature waveform of the user of interest is always available at the receiver. It is shown that by incorporating this knowledge, the impulse response of each user's dispersive channel can be identified using a subspace method. It is further shown that based on the identified signal subspace parameters and the channel response, two linear detectors that are capable of suppressing both MAI and ISI, i.e., a zero-forcing detector and a minimum-mean-square-error (MMSE) detector, can be constructed in closed form, at almost no extra computational cost. Data detection can then be furnished by applying these linear detectors (obtained blindly) to the received signal. The major contribution of this paper is the development of these subspace-based blind techniques for joint suppression of MAI and ISI in the dispersive CDMA channels  相似文献   

16.
In this paper, a new tensorial modeling is first proposed for nonlinear multiple-input multiple-output (MIMO) direct sequence spread spectrum communication systems. The channel is modeled as an instantaneous MIMO Volterra system. Then, a direct data approach for joint blind channel estimation and data recovery is developed using the parallel factor (PARAFAC) decomposition of a third-order tensor composed of received signals, exploiting space, time and code diversities. A blind channel estimation method based on the PARAFAC decomposition of a fifth-order tensor composed of covariances of the received signals is also proposed, considering phase shift keying (PSK) modulated transmitted signals. The proposed estimation algorithms are evaluated by simulating a nonlinear uplink MIMO radio over fiber (ROF) communication system.  相似文献   

17.
In many physical channels where multiuser detection techniques are to be applied, the ambient channel noise is known through experimental measurements to be decidedly non-Gaussian, due largely to impulsive phenomena. This is due to the impulsive nature of man-made electromagnetic interference and a great deal of natural noise. This paper presents a robust multiuser detector for combating multiple access interference and impulsive noise in code division multiple access (CDMA) communication systems. A new M-estimator is proposed for "robustifying" the detector. The approach is corroborated with simulation results to evaluate the performance of the proposed robust multiuser detector compared with that of the linear decorrelating detector, and the Huber and the Hampel M-estimator based detectors. Simulation results show that the proposed detector with significant performance gain outperforms the linear decorrelating detector, and the Huber and the Hampel M-estimator based detectors. This paper also presents an improved robust blind multiuser detection technique based on a subspace approach, which requires only the signature waveform and the timing of the desired user to demodulate that user's signal. Finally, we show that the robust multiuser detection technique and its blind adaptive version can be applied to both synchronous and asynchronous CDMA channels.  相似文献   

18.
毛莉萍 《信息技术》2006,30(4):104-105
利用循环前缀(CP)引入的信息冗余,在利用接受信号的二阶统计特性实现正交频分复用(OFDM)系统信道盲估计的子空间算法基础上,采用矩阵变换的方法,改善信息序列的非周期相关函数,推导出信道估计的新算法。  相似文献   

19.
Blind channel estimation for single-input multiple-output (SIMO) periodically time-varying channels is considered using only the second-order statistics of the data. The time-varying channel is assumed to be described by a complex exponential basis expansion model (CE-BEM). The linear prediction error method for blind identification of time-invariant channels is extended to time-varying channels represented by a CE-BEM. Sufficient conditions for identifiability are investigated. The cyclostationary nature of the received signal is exploited to consistently estimate the time-varying correlation function of the data from a single observation record. The proposed method requires the knowledge of the active basis functions but not the channel length (an upper bound suffices). Several existing methods require precise knowledge of the channel length. Equalization of the time-varying channel, given the estimated channel, is investigated. Computer simulation examples are presented to illustrate the approach and to compare it with two existing approaches.  相似文献   

20.
We discuss a synchronous direct-sequence code division multiple-access (DS-CDMA) system based on block spreading in the presence of frequency-selective fading. Note that block spreading, which is also known as chip interleaving, refers to a spreading of a data block sequence, which is obtained by dividing a data symbol sequence into consecutive blocks. For such a system, we develop a simple new receiver that completely removes the multiuser interference (MUI) without using any channel information. The MUI-free operation is obtained by the use of a shift-orthogonal set of code sequences on which this receiver is based. Within the framework of the MUI-free receiver, we further present a subspace deterministic blind single-user channel estimation algorithm. As a benchmark for the MUI-free receiver and the corresponding subspace deterministic blind single-user channel estimation algorithm, we consider the linear multiuser equalizer and the corresponding subspace deterministic blind multiuser channel estimation algorithm developed by Liu and Xu (1996) for a standard synchronous DS-CDMA system in the presence of frequency-selective fading. We show that the complexity of the MUI-free receiver using the corresponding subspace deterministic blind single-user channel estimation algorithm is much smaller than the complexity of the linear multiuser equalizer using the corresponding subspace deterministic blind multiuser channel estimation algorithm. We further show that the performance of the MUI-free receiver is comparable with the performance of the linear multiuser equalizer. This is for the case in which the channels are known as well as for the case in which the channels are estimated with the corresponding subspace deterministic blind channel estimation algorithm  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号