首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《特殊钢》2017,(6)
根据脱磷氧化反应热力学研究了C-P-Fe耦合作用下的半钢脱磷平衡温度以及P-Fe作用下的转炉冶炼终点钢水脱磷平衡温度,提出了双渣法冶炼"脱磷窗口"的温度控制模型。并进行了46炉45t顶底复吹转炉双渣法脱磷试验,得出转炉一次倒炉钢液温度和终点温度对脱磷率和磷分配比的影响。通过理论计算和工艺试验分析得出,一次倒炉钢液温度控制在1400~1440℃,冶炼终点温度控制在1610~1650时,在目前铁水/%:4.41C,0.41Si,0.19Mn,0.128P,0.034S,1250~1300℃,终点钢水/%:0.08C,0.01Si,0.06Mn,0.009 0P,0.017S,1600~1660℃和相关工艺条件下,可使一次倒炉钢液脱磷率达到62.1%,终点脱磷率达到93.9%,终点磷含量由原0.0090%降低至0.0078%。  相似文献   

2.
通过对转炉炉衬损坏的机理和原因进行分析,莱钢三座120t转炉采取优化补炉方式,优化转炉冶炼工艺.以及应用副枪、激光测厚仪所反馈的数据,同时利用碳镁球来强化溅渣护炉工艺,做到在炉役期的不同阶段采取相应的措施维护转炉炉衬,确保达到安全停炉标准,满足转炉冶炼要求。  相似文献   

3.
《炼钢》2015,(6)
为解决转炉冶炼传统高磷钢终点磷含量低、冶炼成本高的生产问题,在转炉脱磷的基本理论分析基础上,进行了高磷钢冶炼转炉工艺优化试验。确定废钢模式、造渣制度、氧枪控制等是影响转炉脱碳保磷效果的关键因素。生产应用结果表明:高磷钢冶炼工艺优化后,平均终点钢水w(P)达到0.042%,冶炼成本降低22.71元/t。  相似文献   

4.
陆志坚  邓深 《柳钢科技》2007,(F09):112-114
通过分析100t转炉冶炼工艺中存在的问题,对冶炼工艺进行优化,提高转炉过程控制能力和一倒炉命中率,结果表明:过程喷溅可降低至9%,冶炼终点命中率提高到63% 以上。[第一段]  相似文献   

5.
以鞍钢260 t转炉生产的超低碳IF钢为对象,研究了超低碳IF钢的转炉冶炼工艺。结果表明,采取优化铁水罐折铁量提高转炉装入铁水比,增加复吹转炉底枪支数和供气流量进行强化冶炼,部分炉次采取零位搅拌工艺等措施后,能够降低吹炼终点碳氧积和终点氧含量,为RH精炼提供较好的初始条件。  相似文献   

6.
曾建华  何为  陈永 《钢铁钒钛》2012,33(4):68-72
针对攀钢转炉半钢炼钢存在的成渣慢,脱磷率低,炉后回磷大的问题,通过对造渣工艺、供氧、复吹底部供气、终点控制等多方面技术的优化,提高了转炉脱磷率。生产实践表明,采用转炉单渣法冶炼平均脱磷率达到了90%以上,转炉终点磷可稳定控制在0.007%以下,炉后回磷在0.003%以下,满足了成品[P]≤0.010%的低磷钢的生产需求。  相似文献   

7.
由于水钢铁水[Ti]达到0.12%~0.30%,[V]达到0.15%~0.35%,在100t转炉炼钢过程中出现了前期渣难化、去磷困难、金属喷溅、终点钢水成分命中率低、溅渣护炉困难的问题。通过优化渣料加入方法、枪位和温度的控制、炉渣的成分结构,使转炉冶炼顺行,钢铁料消耗从1091kg/t降到1084kg/t,提高了终点钢水成分命中率,改善了溅渣护炉效果,使转炉炉龄达到25426次以上。  相似文献   

8.
在统计分析了转炉前期炉渣碱度和钢水温度,终点炉渣碱度、终渣全铁含量和终点钢水温度对脱磷率影响的基础上,优化了0.29%Si,0.085%P铁水180t复吹转炉的高磷钢冶炼工艺。200炉冶炼结果表明,通过使用低枪位使钢水快速脱碳升温,控制前期炉渣碱度≥2.2、终点炉渣碱度2.8~3.2,终点炉渣全铁含量≤17%,转炉出钢温度1 650~1 680℃,可控制脱磷率≤60%,终点钢水磷含量均值为0.035%。  相似文献   

9.
一、前言转炉补炉是延长炉子寿命不可缺少的措施。但生产中三座转炉经常补炉往往造成钢种生产安排失调,多炉连浇受到限制,尤其在品种多产量高的情况下,束缚了全连铸钢厂的品种安排和生产。目前,二炼钢厂生产船板钢的比例占总产量的25%,能否在补炉后第一炉冶炼船板钢,科学地安排品种钢生产,已经成为转炉——铸机均衡生产提高生产能力的重要环节。为了弄清转炉补炉对冶炼船板钢质量的影响,探索补炉后第一炉冶炼优质船板钢的工艺,进行了工业性对比试验和试生产。试  相似文献   

10.
黄乐 《山西冶金》2022,(5):137-139
通过对影响转炉钢铁料消耗的主要原因进行分析,发现入炉原料T[Fe]含量低、转炉工艺控制以及冶炼操作不当引发溢渣喷溅、冶炼终点过吹且终渣量大是导致转炉钢铁料消耗高的主要原因。针对以上原因从入炉原料优化、改进工艺控制和冶炼操作、稳定冶炼终点温度成分等方面制定控制措施,有效改善了转炉冶炼钢铁料消耗经济技术指标。自2021年下半年以来,阳春新钢铁2座120 t转炉平均钢铁料消耗均控制在1 060 kg/t以下。  相似文献   

11.
本文介绍了转炉经济炉龄生产模式的特点和意义,阐述了实现转炉经济炉龄的方法和途径。通过加强转炉砌炉管理、优化溅渣护炉和补炉工艺、改进转炉冶炼工艺、强化炉底喷枪的维护以及实施炉衬日常动态监控等措施,达到了降低耐材消耗,提高转炉冶炼作业率,降低终点碳氧积,降低终点渣样中(TFe)含量,提高金属收得率和钢水质量的目的,有效降低了炼钢生产的成本,为企业创造了更大效益。  相似文献   

12.
介绍了100 t转炉应用脱磷预处理直炼工艺提高终点命中率的生产实践。冷料比为20%、25%、28%的条件下,优化脱磷、脱碳期供氧和造渣工艺,脱磷期耗氧比从传统工艺的20%~30%提高到30%~50%,脱碳期渣料加入量控制在8~15 kg/t。50炉工业试验结果表明,脱碳期一倒温度达到常规冶炼控制水平,一倒[C]、[P]控制水平明显好于常规冶炼工艺。  相似文献   

13.
介绍了马鞍山钢铁股份公司第一钢轧总厂120t转炉应用烟气分析动态控制冶炼低磷钢的生产实践,制定合适的装入、造渣、供氧制度,优化过程控制,强化转炉脱磷效果,使转炉脱磷率达到93%以上、终点w(P)≤0.007%,确保了不倒炉直接出钢的冶炼模式。  相似文献   

14.
《炼钢》2014,(3)
介绍了复吹转炉两炉双联法工艺在福建三钢闽光股份有限公司高碳钢生产中的应用,分别探讨了脱磷炉和脱碳炉的冶炼工艺参数和应用效果。脱磷炉顶吹供氧强度为2.0~2.7 m3/(t·min),冶炼时间7~10 min,石灰加入量平均为33.3 kg/t,平均炉渣碱度为1.51,底吹供气强度0.25m3/(t·min),温度控制在1 330~1 351℃。脱磷炉半钢平均磷质量分数为0.028 4%,平均碳质量分数为3.04%,平均脱磷率可达67.7%。脱碳炉采用少渣冶炼和高拉碳操作,供氧强度4.0m3/(t·min),底搅供气强度0.13 m3/(t·min),石灰平均加入量为13.8 kg/t,脱碳炉一倒钢水平均磷质量分数为0.013%,平均碳质量分数为0.21%,实现了低磷、高碳出钢的冶金效果。脱碳炉采用锰矿熔融还原工艺,锰矿加入量为4~6 kg/t,平均锰回收率可达46.3%,高拉碳条件下终点平均锰质量分数可达0.303%。复吹转炉两炉双联法冶炼工艺应用于高碳钢生产,实现了低磷、高碳出钢和锰矿的熔融还原,达到了预期的冶炼效果。  相似文献   

15.
对马钢转炉冶炼深脱硫铁水的工艺效果进行了阐述。采用深脱硫铁水冶炼,虽冷料比下降,但转炉可少渣冶炼、实现终点w(s)≤0.006%,C-T命中率提高,终点钢水活度氧含量稳定在556×10~(-6)左右,吹损喷溅下降,石灰等散状料和钢铁料消耗控制在72kg/t钢及1 092kg/t钢以下,解决了转炉脱硫需采用的高温、高碱度、大渣量和多次倒炉操作。  相似文献   

16.
《炼钢》2015,(3)
针对东北特钢集团北满特殊钢有限责任公司普遍采用的炉后增碳法转炉冶炼高碳低磷钢工艺存在的诸多问题,在理论分析和工业试验的基础上,通过造渣模式、化渣脱磷工艺、氧枪枪位及终点控制等工艺技术的系统优化,克服了恶劣原料条件的影响,研究开发了适用于北满特钢的高碳钢转炉冶炼高拉碳工艺,使终点碳质量分数由0.12%提高到0.29%,脱氧剂消耗平均降低了0.21 kg/t,增碳剂消耗平均降低了2.16 kg/t,吨钢成本降低了30.76元,高碳钢综合合格率提高了3.5%。  相似文献   

17.
通过实施改进冶炼工艺提高终点控制及优化溅渣护炉、保证补炉效果等措施,提高二炼钢厂50t转炉高炉龄状态下的护炉工作成效。  相似文献   

18.
 京唐公司炼钢系统铁水转炉预脱磷及“全三脱”铁水少渣冶炼工艺不断进行技术优化,脱磷转炉通过优化废钢尺寸、底吹枪数量和排布,半钢脱磷率可达到70%;铁水经过脱磷转炉脱硅、脱磷后,温度和磷质量分数更加稳定,为脱碳转炉少渣冶炼、自动化炼钢终点双命中率的提高提供了先决条件;脱碳转炉通过采用留渣操作、少渣冶炼技术、溅渣护炉技术后,自动化命中率达到90%以上,炉龄达到7 000炉以上;炼钢车间内渣钢、除尘灰、氧化铁皮等含铁物料实现了自循环消耗。采用“全三脱”铁水冶炼工艺,钢种质量进一步提高,超低磷与超低硫钢中(S+P+N)元素质量分数可稳定控制在0.009 5%以下。  相似文献   

19.
孟华栋  杨勇  姚同路 《中国冶金》2006,32(7):107-113
为了达到节能降耗的目的,在转炉及KR进行钢包热态铸余渣循环利用的工艺试验。对比分析了转炉及KR循环利用钢包热态铸余渣前后的成渣效果和冶金效果。结果表明,在不需要对现有装备进行改造的情况下,常规炉次每炉加入约30 kg/t的钢包热态铸余渣,可节约消耗钢铁料12 kg/t、石灰4.31 kg/t、烧结矿4.87 kg/t、氧气1.83 m3/t,缩短冶炼时间3.24 min/炉,节省冶炼成本39.43 元/t(钢),降低终点a[O]含量,提高终点脱磷率,在提高钢水质量和冶炼效率、降低炼钢成本的同时,减轻了钢包铸余渣排放对环境的污染,经济效益和社会效益良好。为减小钢包铸余渣中硫含量高对转炉冶炼效果的影响,可采用将钢包热态铸余渣返回KR进行铁水预处理的方式加以循环利用,每罐铁水中加入约27 kg/t的钢包热态铸余渣后,石灰等脱硫剂用量减少82.2%,铁水预处理时间缩短1 min,温降减少4 ℃,回磷率降低2个百分点,脱硫率达到69.4%,同样取得了良好效果。  相似文献   

20.
孟华栋  杨勇  姚同路 《中国冶金》2022,32(7):107-113
为了达到节能降耗的目的,在转炉及KR进行钢包热态铸余渣循环利用的工艺试验。对比分析了转炉及KR循环利用钢包热态铸余渣前后的成渣效果和冶金效果。结果表明,在不需要对现有装备进行改造的情况下,常规炉次每炉加入约30 kg/t的钢包热态铸余渣,可节约消耗钢铁料12 kg/t、石灰4.31 kg/t、烧结矿4.87 kg/t、氧气1.83 m3/t,缩短冶炼时间3.24 min/炉,节省冶炼成本39.43 元/t(钢),降低终点a[O]含量,提高终点脱磷率,在提高钢水质量和冶炼效率、降低炼钢成本的同时,减轻了钢包铸余渣排放对环境的污染,经济效益和社会效益良好。为减小钢包铸余渣中硫含量高对转炉冶炼效果的影响,可采用将钢包热态铸余渣返回KR进行铁水预处理的方式加以循环利用,每罐铁水中加入约27 kg/t的钢包热态铸余渣后,石灰等脱硫剂用量减少82.2%,铁水预处理时间缩短1 min,温降减少4 ℃,回磷率降低2个百分点,脱硫率达到69.4%,同样取得了良好效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号