首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Vacuum contact drying kinetics of a model system consisting of nonporous glass beads and water has been experimentally measured on a laboratory scale. A methodology for determination of drying curves from experimental data in a statistically robust way has been developed. The effects of jacket temperature, head-space pressure, particle bed depth, vessel diameter, and particle size on drying rate during constant and falling rate periods have been studied. It was found that in the range of parameters investigated, drying rate does not depend on the means of realization of the driving force (by temperature or pressure); drying rate in the constant-rate period decreases with increasing bed depth while the overall heat-transfer rate increases due to increased surface area. A very strong dependence of drying rate and regime on particle size was observed; the constant-rate period disappeared for small particles.  相似文献   

2.
The modeling of the unit operation of vacuum contact drying is approached as a multi-scale problem. At the particle assembly length scale, effective transport properties (thermal conductivity, relative gas- and liquid-phase permeability) have been determined computationally by simulations on reconstructed porous media and verified by direct measurements. A distributed-parameter model of vacuum contact drying including liquid and vapor flow and differential energy balance has been formulated and used for the calculation of drying time as function of vacuum level, temperature, vessel diameter, and batch size at the unit operation length scale. Drying curves for a model system of sodium carbonate-isopropanol have been measured experimentally and compared with the model predictions. A very good agreement has been found.  相似文献   

3.
The modeling of the unit operation of vacuum contact drying is approached as a multi-scale problem. At the particle assembly length scale, effective transport properties (thermal conductivity, relative gas- and liquid-phase permeability) have been determined computationally by simulations on reconstructed porous media and verified by direct measurements. A distributed-parameter model of vacuum contact drying including liquid and vapor flow and differential energy balance has been formulated and used for the calculation of drying time as function of vacuum level, temperature, vessel diameter, and batch size at the unit operation length scale. Drying curves for a model system of sodium carbonate–isopropanol have been measured experimentally and compared with the model predictions. A very good agreement has been found.  相似文献   

4.
A. Michaud  J. Andrieu 《Drying Technology》2013,31(7-8):1163-1173
Modified literature models were successfully applied to simulate the evolution of the average solvent content (ethanol) of potassium chloride bed during vacuum contact drying with intermittent stirring. Our new modeling approach incorporated the following modifications: the introduction of a jacketed vessel heat transfer coefficient and an accumulation term for the heating wall temperature; the application of alternate static bed and stirred bed conditions; and modeling of all the three drying phases, namely the constant rate phase, the transition phase, and the falling rate phase. Moreover, several validation experiments were carried out with different operating conditions to identify the values of the unknown model parameter. The optimal stirring conditions were investigated by calculating total drying times for different sequences of stirring and no stirring periods.  相似文献   

5.
Modified literature models were successfully applied to simulate the evolution of the average solvent content (ethanol) of potassium chloride bed during vacuum contact drying with intermittent stirring. Our new modeling approach incorporated the following modifications: the introduction of a jacketed vessel heat transfer coefficient and an accumulation term for the heating wall temperature; the application of alternate static bed and stirred bed conditions; and modeling of all the three drying phases, namely the constant rate phase, the transition phase, and the falling rate phase. Moreover, several validation experiments were carried out with different operating conditions to identify the values of the unknown model parameter. The optimal stirring conditions were investigated by calculating total drying times for different sequences of stirring and no stirring periods.  相似文献   

6.
PVC干燥动力学研究   总被引:1,自引:0,他引:1  
实验研究了悬浮法PVC的干燥特性。在测定物料流化参数的基础上,采用单层筒形流休床测定干燥动力学曲线,并回归得到描述PVC干燥特性曲线的解析函数;确定了实验条件下PVC干燥的临界湿含量xc及传质系数K。由于实验方法比较接近工业干燥过程。获得的结果对于工程应用较为可靠。  相似文献   

7.
Distributed-parameter models of vacuum contact drying of a static particle bed have been formulated and a numerical solution of the resulting set of partial differential equations describing heat and mass transfer in the particle bed has been carried out. Systematic parametric study of the effect of jacket temperature, head-space pressure, bed depth, and gas- and liquid-phase relative permeability has been performed. Trends observed in vacuum contact drying experiments, namely the independence of drying rate on the mode of driving force realisation (by jacket temperature or head-space pressure), linear scaling of heat-transfer rate with bed depth during the constant-rate period, independence of drying rate on particle size above a certain critical size, and disappearance of the constant-rate period below a certain particle size, have been reproduced by the model both qualitatively and quantitatively. A study of the effect of gas-phase permeability on drying kinetics revealed an interesting phenomenon-a reversal of the direction of drying front propagation. The drying front was found to originate from the heat source (heated walls) for large permeability, and from the mass sink (head-space) for low permeability.  相似文献   

8.
A mathematical model of mass and heat transfer for vacuum far-infrared drying of potato slices is introduced in this study on the basis of energy and diffusion equations. The finite difference method is used to mathematically simulate the sample temperature and moisture content in different drying conditions. Calculated results are compared with the experimental findings at varying conditions of heater temperature (120°C, 140°C, and 160°C), chamber pressure (1500, 8000, and 15000 Pa), sample thickness (0.004, 0.006, and 0.008 m), and radiation distance (0.08, 0.12, and 0.16 m). Comparison results show that the model fits well the changes in sample temperature and moisture content at different times of drying, with the values of the coefficient of determination close to 1.0 and the relative error values less than 10%.  相似文献   

9.
《Drying Technology》2013,31(8):1527-1548
Abstract

Microwave vacuum drying experiments were performed on a laboratory scale dryer with a two-level porosity material: a packed bed of porous alumina beads. The incident microwave power and the vacuum pressure level were fixed, the main varying parameters being the beads diameter and porosity, and the mean pore diameter. The drying kinetics and the evolution of the product temperature are presented. The drying kinetics can be divided into two main periods. The first one corresponds to the drying from the bed voids according to evaporation mechanism that we describe with a stagnant film law. The second one corresponds to the drying from the particle pores and we divide it into two parts: we suggest that the former is dominated by capillarity driven moisture transport, and the latter is limited by the desorption kinetics of the few water layers left.  相似文献   

10.
E. Rodier  A. Rizzo 《Drying Technology》2003,21(8):1527-1548
Microwave vacuum drying experiments were performed on a laboratory scale dryer with a two-level porosity material: a packed bed of porous alumina beads. The incident microwave power and the vacuum pressure level were fixed, the main varying parameters being the beads diameter and porosity, and the mean pore diameter. The drying kinetics and the evolution of the product temperature are presented. The drying kinetics can be divided into two main periods. The first one corresponds to the drying from the bed voids according to evaporation mechanism that we describe with a stagnant film law. The second one corresponds to the drying from the particle pores and we divide it into two parts: we suggest that the former is dominated by capillarity driven moisture transport, and the latter is limited by the desorption kinetics of the few water layers left.  相似文献   

11.
A two-dimensional mathematical model developed for vacuum-contact drying of wood was adapted to simulate superheated steam vacuum drying. The moisture and heat equations are based on the water potential concept whereas the pressure equation is formulated considering unsteady-state mass conservation of dry air. A drying test conducted on sugar maple sapwood in a laboratory vacuum kiln was used to infer the convective mass and heat transfer coefficients through a curve fitting technique. The average air velocity was 2.5 m s-1 and the dry-bulb temperature varied between 60 and 66°C. The ambient pressure varied from 15 to 11 kPa. Simulation results indicate that heat and mass transfer coefficients are moisture content dependent. The simulated drying curve based on transfer coefficients calculated from boundary layer theory poorly fits experimental results. The functional relation for the relative permeability of wood to air is a key parameter in predicting the pressure evolution in wood in the course of drying. In the case of small vacuum kilns, radiant heat can contribute substantially to the total heat transfer to the evaporative surface at the early stages of drying. As for conventional drying, the air velocity could be reduced at the latter stage of drying with little or no change to the drying rate.  相似文献   

12.
《Drying Technology》2013,31(10):2231-2253
Abstract

A two-dimensional mathematical model developed for vacuum-contact drying of wood was adapted to simulate superheated steam vacuum drying. The moisture and heat equations are based on the water potential concept whereas the pressure equation is formulated considering unsteady-state mass conservation of dry air. A drying test conducted on sugar maple sapwood in a laboratory vacuum kiln was used to infer the convective mass and heat transfer coefficients through a curve fitting technique. The average air velocity was 2.5 m s?1 and the dry-bulb temperature varied between 60 and 66°C. The ambient pressure varied from 15 to 11 kPa. Simulation results indicate that heat and mass transfer coefficients are moisture content dependent. The simulated drying curve based on transfer coefficients calculated from boundary layer theory poorly fits experimental results. The functional relation for the relative permeability of wood to air is a key parameter in predicting the pressure evolution in wood in the course of drying. In the case of small vacuum kilns, radiant heat can contribute substantially to the total heat transfer to the evaporative surface at the early stages of drying. As for conventional drying, the air velocity could be reduced at the latter stage of drying with little or no change to the drying rate.  相似文献   

13.
占丹  廖传华 《当代化工》2014,(12):2535-2538
为研究洋葱在真空干燥条件下的干燥特性,选用不同干燥条件对洋葱进行脱水处理,测定不同工艺条件下洋葱的干燥曲线和干燥速率曲线。结果表明,温度和真空度对洋葱真空干燥过程都有明显的影响,且洋葱真空干燥的动力学模型符合Page方程,并得到本试验条件下的动力学模型。  相似文献   

14.
Vacuum‐fluidized bed drying experiments were carried out with porous as well as compact particles, employing distinct operating pressures in two periods of drying, such that the combination of the effects of decrease in the transport capacity of the exterior medium and the enhancement of the internal diffusivity results in favour of the drying process. In a variety of operating conditions, it was observed that in the case of porous particles, increasing the operating pressure during the decreasing drying rate period, after applying a vacuum pressure in the constant drying rate period results in a lower final particle humidity.  相似文献   

15.
A lab model vacuum-assisted solar dryer was developed to study the drying kinetics of tomato slices (4, 6, and 8 mm thicknesses) compared with open sun drying under the weather conditions of Montreal, Canada. The drying study showed that the time taken for drying of tomato slices of 4, 6, and 8 mm thicknesses from the initial moisture content of 94.0% to the final moisture content of around 11.5 ± 0.5% (w.b.) was 360, 480, and 600 min in vacuum-assisted solar dryer and 450, 600, and 750 min in open sun drying, respectively. During drying, it was observed that the temperature inside the vacuum chamber was increased to 48°C when the maximum ambient temperature was only 30°C. The quality of tomato slices dried under vacuum-assisted solar dryer was of superior quality in terms of color retention and rehydration ratio. The drying kinetics using thin-layer drying models and the influence of weather parameters such as ambient air temperature, relative humidity, solar insolation, and wind velocity on drying of tomato slices were evaluated.  相似文献   

16.
Spray drying of a concentrated common salt (NaCl) solution carried out in the intense oscillating high-temperature turbulent flow field generated in the tailpipe of a pulse combustor was simulated. Simulation of such transport process problems is especially crucial since the environmental conditions are too hostile for detailed and reliable measurements. The momentum, heat, and mass transfer processes between the gas and droplet phases during drying were simulated using a computational fluid dynamic solver. The simulated profiles of flow field, temperature, and humidity of gaseous phase, and particle trajectories in a drying chamber are presented and discussed. The effects of gas temperature, pulse frequency and amplitude, and gas mass flow rate on the transient flow patterns, droplet trajectories, and overall dryer performance were investigated. Different turbulence models were also tested. Simulation results show that the flow field and droplet drying conditions vary widely during a single pulsating period. Very short drying times and very high drying rate characterize pulse combustion spray drying. Thus, pulse combustion drying can be applied to drying of fine droplets of highly heat-sensitive materials although the jet temperature initially is extremely high.  相似文献   

17.
《Drying Technology》2012,30(15):1771-1785
Advances in the study of the rate processes in spray drying have helped improve product quality. Single droplet drying (SDD) is an established method for monitoring the drying kinetics and morphological changes of an isolated droplet under a controlled drying environment, mimicking the droplet convective drying process in spray drying. To enhance particle quality requires understanding of both the particle formation process and knowledge of how different particle properties are affected by the drying conditions used. The latest development in the SDD technique enables evaluation of these aspects by incorporating a dissolution test in the drying experiment. The experiment is realized by attaching a solvent droplet to a dried/semi-dried single particle in situ and then video-recording the resultant morphological changes. Some of the particle (e.g., crystallinity) properties obtained under different drying conditions can be modelled using the measured droplet drying kinetics. This paper reviews the applications of SDD experiments in measuring the drying kinetics and monitoring the droplet morphological changes during drying. Some examples of extending the glass filament SDD technique to examine particle functionalities are discussed. SDD experiments are shown to be a powerful tool for particle engineering due to its ability to study both the external convective transport process of a single droplet and to understand the different particle functionalities of the resultant single dried particle.  相似文献   

18.
Spray drying of a concentrated common salt (NaCl) solution carried out in the intense oscillating high-temperature turbulent flow field generated in the tailpipe of a pulse combustor was simulated. Simulation of such transport process problems is especially crucial since the environmental conditions are too hostile for detailed and reliable measurements. The momentum, heat, and mass transfer processes between the gas and droplet phases during drying were simulated using a computational fluid dynamic solver. The simulated profiles of flow field, temperature, and humidity of gaseous phase, and particle trajectories in a drying chamber are presented and discussed. The effects of gas temperature, pulse frequency and amplitude, and gas mass flow rate on the transient flow patterns, droplet trajectories, and overall dryer performance were investigated. Different turbulence models were also tested. Simulation results show that the flow field and droplet drying conditions vary widely during a single pulsating period. Very short drying times and very high drying rate characterize pulse combustion spray drying. Thus, pulse combustion drying can be applied to drying of fine droplets of highly heat-sensitive materials although the jet temperature initially is extremely high.  相似文献   

19.
Abstract

The aim of this work is to model the drying kinetics of mushrooms under several operational conditions, to evaluate the effective diffusivity coefficient of moisture removing by a drying model and inverse calculus method in finite differences and to study the effect on the final quality of dehydrated mushrooms. Different ways of microwave vacuum drying were compared to freeze-drying. Results show that a decrement of the applied pressure produces a certain increase in the drying rate together with a lower moisture in the dehydrated product at the end. Temperature control inside the sample helps to ensure a better quality in the dehydrated product, than when controlled at the surface. Diffusivity coefficients show a correspondence with product temperature during drying. The microwave dried samples obtained with moderate power and temperature control of product shown an important degree of quality similar to that obtained by freeze-drying.  相似文献   

20.
Low-pressure superheated steam drying (LPSSD) has recently been applied to drying of various heat-sensitive foods and bioproducts with success. Several studies have shown that the quality of LPSSD-dried products is superior to that obtained using conventional hot air or vacuum drying. However, drying time and energy consumption for LPSSD is generally greater than that for vacuum drying. Therefore, it is necessary to examine different methodologies to improve the energy efficiency of LPSSD. An intermittent drying scheme is one possible method to reduce the energy consumption of the process while maintaining the desired product quality. In this study, the effect of intermittent supply of energy (through an electric heater and steam injection to the dryer) and vacuum (through the use of a vacuum pump) at various intermittency values or on:off periods (10:5, 10:10 and 10:20 min in the case of intermittent supply of energy and 5:0, 5:5, and 5:10 min in the case of intermittent supply of vacuum) at the on-period setting temperatures of 70, 80, and 90°C on the drying kinetics and heat transfer behavior of the drying samples (banana chips) was studied. The effects of these intermittent drying schemes and conditions on the quality parameters of dried banana chips; i.e., color, shrinkage, texture, and ascorbic acid retention, were also studied. Finally, the energy consumption values for intermittent LPSSD and vacuum drying were monitored through the effective (or net) drying time at various intermittent drying conditions and compared with those using continuous LPSSD and vacuum drying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号