首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
3.
Disproportionating enzyme (D-enzyme, 4-alpha-glucanotransferase; EC 2.4.1.25) has been purified to homogeneity from potato tubers and its activity characterized. The enzyme catalyzes the transfer of maltooligosaccharides from one 1,4-alpha-D-glucan molecule to another, or to glucose. Maltooligosaccharides are effective donor molecules, but short chain amylose and amylopectin may also function as donors. Enzyme activity is not affected by inorganic phosphate, 3-phosphoglycerate, or hexose phosphates. A cDNA clone encoding the enzyme was isolated using oligonucleotide probes derived from partial peptide sequences of the purified enzyme. The identity of the cDNA clone was confirmed by expression in Escherichia coli resulting in D-enzyme activity. The amino acid sequence deduced from the cDNA shows significant homology with a 4-alpha-glucanotransferase from Streptococcus. The deduced sequence indicates the presence of an amino-terminal plastid transit peptide of 52 amino acid residues and a mature polypeptide of 524 residues. D-enzyme mRNA is present in leaves, stems, roots, and stolons but is most abundant in developing and mature tubers. The amount of mRNA in leaves increases in response to light and to sucrose added to the medium. These results are discussed in terms of the function of D-enzyme in potato starch metabolism.  相似文献   

4.
The nucleotide sequences of the genome segments A and B encoding the precursor polyprotein (NH2-VP2-VP4-VP3-COOH) and VP1 were determined for a highly virulent strain of infectious bursal disease virus (IBDV). The precursor polyprotein and VP1 coding regions of highly virulent OKYM strain consisted of 3039 nucleotides (1012 deduced amino acids) and 2640 nucleotides (879 deduced amino acids), respectively. Comparison of the deduced amino acid sequences of the highly virulent IBDV (HV-IBDV) with other serotype 1 and 2 sequences revealed 17 amino acid residues which were conserved only in the HV-IBDV. Among the 17 unique amino acid differences, 8 were in VP1, 4 were in VP2, 3 were in VP3 and 2 were in VP4. Although it is impossible to predict the effect of the unique amino acid residues without detailed knowledge of the three-dimensional structure and function of the proteins, they could affect the virulence of HV-IBDV. Alignment of the nucleic acid sequences of precursor polyprotein, VP1, VP2, VP3 and VP4 coding regions followed by distance analysis allowed the generation of phylogenetic trees. The same tree topology was obtained for the nucleotide sequence of precursor polyprotein, VP2, VP3 and VP4. On the other hand, the tree topology of VP1 was quite different from that obtained for the nucleotide sequence of precursor polyprotein, VP2, VP3 and VP4. These findings indicate that not a genetic recombination but a genetic reassortment may play an important role in the emergence of HV-IBDV.  相似文献   

5.
Conformational transitions of holo-alpha-lactalbumin in a hydro-ethanolic cosolvent system was studied by spectrofluorescence, CD in near- and far-uv regions, and high-sensitivity differential scanning calorimetry. Experimental results allow us to propose that in isothermal conditions alpha-lactalbumin undergoes a number of conformational transitions with increasing ethanol concentration: N<=>I<=>D<=>H. The existence of I-state was deduced from spectrofluorometric and near-uv CD data. In this state the aromatic chromophores of the amino acid side chains are more accessible to the solvent displaying higher local mobility. The H-state was detected from far-uv CD spectra as a state corresponding to the content of alpha-helices higher than originally found in native protein. However, calorimetric measurements provide data revealing only the two-state mechanism of alpha-lactalbumin unfolding in both water and in aqueous ethanol solutions. This indicates that the energy levels of N- and I-states as well as of D- and H-states are similar. Thermodynamics of the unfolding of alpha-lactalbumin in hydroethanolic solutions was analyzed with the help of the linear model of solvent denaturation. Unfolding increments of enthalpy, entropy, and Gibbs energy of transfer of the protein from a reference aqueous solution to hydro-ethanolic solutions of different concentrations were determined from the calorimetric data. They are linear functions of molar ethanol fraction. The slope of the unfolding increment of Gibbs energy of transfer was calculated from data on transfer of amino acid residues taking into account the average solvent accessibility of amino acid residues in the native structure of small globular proteins, using the additive group contribution method.  相似文献   

6.
Docking of the nitrogenase component proteins, the iron protein (FeP) and the molybdenum-iron protein (MoFeP), is required for MgATP hydrolysis, electron transfer between the component proteins, and substrate reductions catalyzed by nitrogenase. The present work examines the function of 3 charged amino acids, Arg 140, Glu 141, and Lys 143, of the Azotobacter vinelandii FeP in nitrogenase component protein docking. The function of these amino acids was probed by changing each to the neutral amino acid glutamine using site-directed mutagenesis. The altered FePs were expressed in A. vinelandii in place of the wild-type FeP. Changing Glu 141 to Gln (E141Q) had no adverse effects on the function of nitrogenase in whole cells, indicating that this charged residue is not essential to nitrogenase function. In contrast, changing Arg 140 or Lys 143 to Gln (R140Q and K143Q) resulted in a significant decrease in nitrogenase activity, suggesting that these charged amino acid residues play an important role in some function of the FeP. The function of each amino acid was deduced by analysis of the properties of the purified R140Q and K143Q FePs. Both altered proteins were found to support reduced substrate reduction rates when coupled to wild-type MoFeP. Detailed analysis revealed that changing these residues to Gln resulted in a dramatic reduction in the affinity of the altered FeP for binding to the MoFeP. This was deduced in FeP titration, NaCl inhibition, and MoFeP protection from Fe2+ chelation experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A cDNA and a gene encoding endo-inulinase from Penicillium purpurogenum were isolated, and were cloned for the first time. Two oligonucleotide probes, which were synthesized based on the partial amino acid sequences of the purified endo-inulinase, were used to screen a cDNA library. A 1.7-kb DNA fragment encoding endo-inulinase was isolated and analyzed. A single open reading frame, consisting of 1548-bp, was found to encode a polypeptide that comprised a 25-amino acid signal peptide and 490-amino acid mature protein. All the partial amino acid sequences of the purified enzyme were discovered in the deduced ones. The deduced amino acid sequences of endo-inulinase had similar sequences to those of fructan hydrolases. A 3.5-kb chromosomal DNA fragment encoding endo-inulinase was also isolated and analyzed. The same ORF with cDNA clone as identified. There were no introns in the endo-inulinase gene.  相似文献   

8.
9.
A periodontal pathogen, Porphyromonas gingivalis possesses either a 53 kD (Ag53) or a 67 kD (Ag67) outer membrane protein (OMP). Almost all sera from patients with periodontal diseases reacted strongly with either Ag53 or Ag67. In previous work the cloning and sequencing of the 53 kD outer membrane protein gene designated pga53 from P. gingivalis FDC381, was reported and the presence of a gene homologous to pga53 in P. gingivalis ATCC 33277 demonstrated. In the present work this pga53-homologous gene from P. gingivalis ATCC 33277 was isolated and characterized. Nucleotide sequence analysis revealed that this gene encoded Ag67, and the gene was designated pga67. The deduced amino acid sequence and composition of pga67 was similar to the amino acid composition and N-terminal partial sequence of Ag67. An open reading frame of pga67 consisted of 1,692 nucleotides encoded as 564 amino acids, including a 49 amino acid signal sequence. The comparative analysis between pga67 and pga53 revealed that (1) the deduced amino acid sequence showed a 30.1% homology; (2) signal sequence and proline-rich regions at the C-terminus were the most conserved regions; (3) considerable differences were found mainly in the middle part of the OMPs; and (4) obvious differences in the two-dimensional models were evoked. These differences between pga67 and pga53 may explain the antigenic diversity between Ag67 and Ag53 OMPs.  相似文献   

10.
Methionine synthase catalyzes cobalamin-dependent methyl transfer reaction from 5-methyltetrahydrofolate to homocysteine, forming methionine. Rat methonine synthase cDNA was cloned and analyzed by RT-PCR, 3'- and 5'-RACE techniques. The cDNA consists of a 0.3-kb upstream untranslated region, a 3.8-kb coding region, and a 0.4-kb downstream untranslated region. The open reading frame encoded a polypeptide of 1,253 amino acid residues with a calculated molecular weight of 139,162. This molecular weight was in good agreement with the observed one (143,000) of the purified rat liver enzyme. The deduced amino acid sequence was 53, 92, and 64% identical with those of the Escherichia coli, human, and presumptive Caenorhabditis elegans enzymes, respectively. All the fingerprint sequences, forming parts of the cobalamin- and S-adenosylmethionine-binding sites, were completely conserved in the rat methionine synthase. A high-level expression of catalytically active enzyme in insect cells was done by infection with a baculovirus containing the rat methionine synthase cDNA.  相似文献   

11.
12.
Two genes from Corynebacterium equii, a Gram-positive bacterium producing the CeqI restriction-modification enzymes were cloned and sequenced. In vivo restriction experiments, DNA and amino acid sequence data suggest that the two genes code for the endonuclease and the methyltransferase enzymes. However, when the two genes are expressed in E. coli, practically no enzyme activity can be detected in the supernatants of sonicated cells. Based on the DNA sequence data CeqI restriction endonuclease (an EcoRV izoschizomer) consists of 270 amino acid residues with a predicted molecular mass of 31.6 kDa, in good agreement with the previously measured 32 +/- 2 kDa. The methyltransferase is 517 residues long (approx. 60 kDa). The two genes are in opposite orientation and overlap by 37 base pairs on the chromosome. The deduced amino acid sequence of the putative endonuclease gene revealed long stretches of hydrophobic amino acids, that may form the structural basis of the unusual aggregation properties of the restriction endonuclease. The amino acid sequence of the methylase shows homologies with other type II methyltransferases.  相似文献   

13.
Four cDNAs encoding phosphoribosyl diphosphate (PRPP) synthase were isolated from a spinach (Spinacia oleracea) cDNA library by complementation of an Escherichia coli Deltaprs mutation. The four gene products produced PRPP in vitro from ATP and ribose-5-phosphate. Two of the enzymes (isozymes 1 and 2) required inorganic phosphate for activity, whereas the others were phosphate independent. PRPP synthase isozymes 2 and 3 contained 76 and 87 amino acid extensions, respectively, at their N-terminal ends in comparison with other PRPP synthases. Isozyme 2 was synthesized in vitro and shown to be imported and processed by pea (Pisum sativum) chloroplasts. Amino acid sequence analysis indicated that isozyme 3 may be transported to mitochondria and that isozyme 4 may be located in the cytosol. The deduced amino acid sequences of isozymes 1 and 2 and isozymes 3 and 4 were 88% and 75% identical, respectively. In contrast, the amino acid identities of PRPP synthase isozyme 1 or 2 with 3 or 4 was modest (22%-25%), but the sequence motifs for binding of PRPP and divalent cation-nucleotide were identified in all four sequences. The results indicate that PRPP synthase isozymes 3 and 4 belong to a new class of PRPP synthases that may be specific to plants.  相似文献   

14.
Cockroaches produce potent allergens that are an important cause of asthma. The two principal domiciliary cockroach species, Blattella germanica and Periplaneta americana, secrete major allergens, Bla g 1 and Per a 1. Here, we report the molecular cloning of three Bla g 1 cDNA clones, which showed 70% amino acid sequence identity with Per a 1. Plaque immunoassays with human IgE antibodies or murine monoclonal antibodies showed that these allergens were antigenically cross-reactive. The Bla g 1 sequences also showed homology to five previously undefined cockroach allergen sequences. An unusual feature of all these sequences was that they contained multiple tandem amino acid repeats of approximately 100 amino acid residues. Between one and seven repeat units were identified by dot-plot matrix analysis. The sequences also showed homology to a mosquito protein involved in digestion (ANG12 precursor) and to mitochondrial energy transfer proteins. High levels of Bla g 1 were found in cockroach hindgut and proventriculus. Amino acid sequencing of natural Bla g 1 and Per a 1 suggested that these allergens are cleaved by trypsin-like enzymes following secretion into the digestive tract. The repeat sequences appear to have evolved by duplication of an ancestral amino acid domain, which may have arisen from the mitochondrial energy transfer proteins.  相似文献   

15.
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the transfer of an acyl group from an acyl donor to the sn-1 position of glycerol 3-phosphate. The plant cell contains three types of GPAT, which are located in the chloroplasts, mitochondria and cytoplasm, respectively. The enzyme in chloroplasts is soluble and uses acyl-(acyl-carrier protein) as the acyl donor, whereas the enzymes in the mitochondria and the cytoplasm are bound to membranes and use acyl-CoA as the acyl donor. cDNAs for GPAT of chloroplasts have been cloned from several plants, and the gene for the enzyme has been cloned from Arabidopsis thaliana. The amino acid sequences deduced from the nucleotide sequences of cDNAs indicate that the product of translation is a precursor of about 460 amino acid residues, which consists of a leader sequence of about 70 amino acid residues and a mature protein of about 400 residues, with a molecular mass of about 42 kDa. Genetic engineering of the unsaturation of fatty acids has been achieved by manipulation of the cDNA for the GPAT found in chloroplasts and has allowed modification of the ability of tobacco to tolerate chilling temperatures.  相似文献   

16.
Candida parapsilosis secretes an inducible acid protease (ACP) when cultivated in the presence of bovine serum albumin as the sole nitrogen source. In order to clone the ACP gene (ACP) of C. parapsilosis, a genomic library was screened with C. tropicalis ACP as the probe. Two different ORFs, ACPR and ACPL, were found to hybridize with the C. tropicalis ACP. ACPR contained a DNA sequence in agreement with the N-terminal amino acid sequence of C. parapsilosis ACP isolated from culture supernatants. ACPR was shown to be expressed and functional in a C. tropicalis acid protease mutant (acp) and with SDS-PAGE the protein product showed the same mobility as the ACP secreted by C. parapsilosis. These results imply that ACPR encodes the C. parapsilosis ACP. The deduced amino acid sequence of ACPR is similar to the amino acid sequence of proteases of the pepsin family. As in the case of the C. tropicalis and C. albicans ACP, the 5' extremity of ACPR revealed a propeptide containing two Lys-Arg amino acid pairs that have been identified as peptidase processing sites in several yeast-secreted peptides and protein precursors. As judged from the deduced amino acid sequences, the ACPL product would be similar to that of ACPR; however, a protein corresponding to ACPL was not found in supernatants from C. parapsilosis liquid cultures. In addition, ACPL did not complement the C. tropicalis acp mutant. We conclude that ACPL is a pseudogene or serves an as yet unidentified function.  相似文献   

17.
18.
The endogenous protease(s) activated crystal toxin from Bacillus thuringiensis subsp. kurstaki was purified and examined. The purified toxin was homogenous, as demonstrated by two-dimensional polyacrylamide gel electrophoresis and contained 1.38 mumoles neutral sugar and 9 nmoles sialic acid per mg protein amino terminal amino acid sequence data revealed that the toxin is a cleavage product of 132 kDa protoxin with glutamic acid-30 of the deduced amino acid sequence of the crystal protein (Schnepf, H.E., Wong, H.C. and Whiteley, H.R. (1985) J. Biol. Chem. 260: 6264-6272) at the amino terminus.  相似文献   

19.
Acylation of anthocyanins with hydroxycinnamic acid derivatives is one of the most important and less under-stood modification reactions during anthocyanin biosynthesis. Anthocyanin aromatic acyltransferase catalyses the transfer of hydroxycinnamic acid moieties from their CoA esters to the glycosyl groups of anthocyanins. A full-length cDNA encoding the anthocyanin 5-aromatic acyltransferase (5AT) (EC 2.3.1.153) that acylates the glucose bound at the 5-position of anthocyanidin 3,5-diglucoside was isolated from petals of Gentiana triflora on the basis of the amino acid sequence of the purified enzyme. The isolated full-length cDNA had an open reading frame of 469 amino acids and the calculated molecular weight was 52,736. The deduced amino acid sequence contains consensus motifs that are conserved among the putative acyl CoA-mediated acyltransferases, and this indicates that 5AT is a member of a proposed superfamily of multi-functional acyltransferases (St-Pierre et al. (1998) Plant J. 14, 703-713). The cDNA was expressed in Escherichia coli and yeast, and confirmed to encode 5AT. The enzymatic characteristics of the recombinant 5AT were consistent with those of the native gentian 5AT. Immunoblot analysis using specific antibodies to 5AT showed that the 5AT protein is present in petals, but not in sepals, stems or leaves of G. triflora. RNA blot analysis showed that the 5AT gene is expressed only in petals and that its expression is temporally regulated during flower development coordinately with other anthocyanin biosynthetic genes. Immunohistochemical analysis demonstrated that the 5AT protein is specifically expressed in the outer epidermal cells of gentian petals and that it is localized mainly in the cytosol.  相似文献   

20.
A full-length cDNA clone for GTP cyclohydrolase I (EC 3.5.4.16) was isolated from a mouse brain cDNA library by plaque hybridization. The nucleotide sequence determination revealed that the length of the cDNA insert was 994 base pairs. The coding region encoded a protein of 241 amino acid residues with a calculated molecular mass of 27,014 daltons. The deduced amino acid sequence of mouse GTP cyclohydrolase I was found to be highly homologous to rat (96%) and human type 1 (89%) enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号